Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волны детонационные в газах

    ВОЗНИКНОВЕНИЕ ДЕТОНАЦИОННОЙ ВОЛНЫ В ГАЗАХ [c.356]

    Однако вытекающие и.з законов сохранения массы, количества движения и энергии уравнения вместе с уравнением состояния недостаточны для определения скорости детонации О, поскольку эти уравнения содержат четыре неизвестных величины рг> Т . и О, тогда как из законов сохранения и уравнения состояния могут быть получены лишь три неизвестных. Недостающее четвертое уравнение, по Чепмену, может быть определено условием касания прямой, проведенной на плоскости ру из точки РцУ к детонационной адиабате (кривой продукты реакции , рис. (57). Каждая частица газа в детонационной волне претерпевает следующие превращения. Сначала ударная волна сжимает газ, переводя его из точки р и в точку р = р , [c.242]


    ДЕТОНАЦИОННЫЕ ВОЛНЫ В ГАЗАХ [c.193]

    ДЕТОНАЦИОННЫЕ ВОЛНЫ В ГАЗАХ [ГЛ. в [c.194]

    Для того чтобы проанализировать структуру детонационной волны, следует рассмотреть три области несжатые газы, сжатые, но не прореагировавшие газы и полностью сгоревшие газы позади реакционной зоны. Главное различие между первоначальными зонами горения и зонами позади ударного фронта заключается в том, что в последних поддерживается относительно высокая температура и плотность сжатых газов (см. рис. XIV.6 и XIV. ). Следовательно, изучение свойств ударных волн представляет интерес ради выяснения их возможного влияния на химические реакции. [c.406]

    В следующем параграфе мы рассмотрим структуру стационарных плоских одномерных детонационных волн в газах. В 3 анализируются факторы, оказывающие влияние на скорость распространения детонации. О других фундаментальных исследованиях по детонации кратко сообщается в 4, где, но существу, содержится критический обзор избранной литературы. Чтобы не увеличивать размеры книги, мы не излагаем в полном объеме вопросы, рассматриваемые в 3 и 4. Здесь следует посоветовать читателю обратиться к имеющейся литературе. Несколько более подробное рассмотрение ряда вопросов можно найти в работах р ]. [c.194]

    ДЕТОНАЦИОННЫЕ ВОЛНЫ В ГАЗАХ ГГЛ. 6 [c.196]

    ДЕТОНАЦИОННЫЕ волны в ГАЗАХ [ГЛ. б [c.198]

    ДЕТОНАЦИОННЫЕ ВОЛНЫ в ГАЗАХ [ГЛ. 6 [c.208]

    Сжатие и нагрев несгоревших газов ударной волной привадит к воспламенению. В этом случае во взрывной зоне в свою очередь выделяется большое количество тепла, которого почти достаточно для того, чтобы поддержать стационарную ударную волну. Если допустить, что между концом ударного фронта и началом взрывной волны имеется небольшая зона, где не идет никакой реакции, то газы в этой области будут более горячими, чем несжатые газы, и более плотными в результате большого давления. Следовательно, их локальная поверхностная скорость относительно ударного фронта меньше, чем скорость несжатых газов перед фронтом. Последующая химическая реакция, хотя и нагревает газы, по они сохраняют более высокую плотность, а следовательно, и более низкую скорость по сравнению с несгоревшими газами. Таким образом, относительно фронта детонации продукты горения удаляются с объемной скоростью, меньшей, чем скорость несгоревших газов. Это противоположно положению для обычной волны горения. Профиль одномерной детонационной волны схематично изображен на рис. XIV. . [c.405]

    ДЕТОНАЦИОННЫЕ волны в ГАЗАХ [c.218]

    Вполне аналогично обстоит дело также в случае ударных волн в газе и детонационных волн скорости распространения этих волн определяются из законов сохранения массы, импульса и энергии и не требуют для своего определения привлечения структуры волн. Структура волн определяет ширину переходной области. [c.104]


    В этих условиях волна давления, выходящая из пламени и распространяющаяся со скоростью звука, непрерывно усиливается. Впереди реакционной зоны создается область очень резких изменений давления, плотности и температуры. Эта область в несгоревших газах движется со скоростью, превышающей скорость звука. Такое явление называется ударной волной. Если же оно начинается и сопровождается взрывом, то такое явление называется детонационной волной. [c.405]

    Расширение газов при горении смеси приводит к образованию ударной волны, распространяющейся перед фронтом пламени. Сжатие газа и его нагревание в ударной волне тем сильнее, чем больше скорость движения расширяющихся газов, которая в свою очередь определяется скоростью горения. При быстром сгорании нагревание смеси в ударной волне может стать настолько значительным, что произойдет ее воспламенение перед фронтом пламени. В этом случае создается такой режим горения, при котором послойный процесс поджигания осуществляется не путем теплопроводности, а под действием импульса давления, т. е. путем детонации. Прн детонационном горении образуется комплекс ударной волны и следующей за ней зоны сжатой и нагретой реагирующей смеси — так называемая детонационная волна. [c.23]

    Поскольку получающаяся из общих законов сохранения формула дл5 скорости ударной волны содержит только величины, характеризующие начальное и конечное состояние газа, формула, выражающая скорость детонационной волны, должна быть аналогична этой формуле. Различие обеи. формул состоит лишь в том, что в ударной волне конечное состояние газа определяется величинами риг , отвечающими входящей в уравнение (47.1) температуре Т. В детонационной же волне конечное состояние газа, являющееся состоянием продуктов горения, определяется величипами и иг. отвечающими некоторой точке па детонационной адиабате. Таким образом, скорость [c.241]

    Для ацетилена известно так называемое нестационарное горение, при котором часть газа сгорает, а остальное количество сжимается перед фронтом пламени и детонирует уже в сжатом состоянии. Давление, развивающееся при таком разложении, может быть больше в 500—600 раз давления в отраженной детонационной волне. [c.20]

    Последующее развитие теории детонации было направлено на описание явления с учетом различных проявлений возмущений, возникающих во фронте детонационной волны. Теоретически рассматривались также некоторые свойства детонационной волны, в частности концентрационные пределы ее распространения. На основании анализа взаимосвязи между детонацией и обусловливающей ее химической реакцией горения Я. В. Зельдович пришел к выводу, что в детонационной волне вследствие большой скорости ее распространения изменение состояния газа происходит на длине свободного пробега молекулы (величина порядка см). В этих условиях теплопроводность и диффузия активных центров не могут принимать участия в механизме распространения детонационной волны. Способность смеси к распространению детонации определяется скоростью химических реакций, обусловливающих ее самовоспламенение во фронте детонационной волны. [c.142]

    Давление в детонационной волне может превышать начальное давление газа в 20—30 раз, а при отраже НИИ волны от препятствий — в 40—60 раз. [c.23]

    Главная опасность детонации заключается в повышенной отдаче тепла от сгоревших газов в стенки камеры сгорания и днище поршня из-за более высоких температур в детонационной волне и увеличения коэффициента теплоотдачи в результате срыва пограничного слоя более холодного газа [18]. [c.69]

    Если в двигателе используется такой бензин, в составе которого преобладают углеводороды, не дающие при окислении большого количества пероксидных соединений, то концентрация пероксидов в последних порциях смеси не достигает критических величин, и сгорание заканчивается нормально, без детонации. Если при окислении бензина в последних порциях смеси накапливается много пероксидных соединений, то при некоторой критической концентрации происходит их взрывной распад с последующим самовоспламенением. Появляется новый фронт горячего пламени, двигающийся по нагретой активной смеси, в которой предпламенные реакции близки к завершению. При этом появляется детонационная волна сгорания, имеющая скорость 2000—2500 м/с. Одновременно с появлением очага детонационного сгорания возникает новый фронт ударной волны. Многократное отражение ударных волн от стенок камер сгорания рождает характерный звонкий металлический стук высоких тонов. При детонационном сгорании двигатель перегревается, появляются повышенные износы цилиндро-поршневой группы, увеличивается дымность отработавших газов. [c.10]

    Таким образом, возникающая при детонации ударная волна сопровождается волной горения обе волны, в совокупности образующие детонационную волну, распространяются в газе с некоторой скоростью (скорость детонации), которая значительно превосходит нормальную скорость пламени и обычно составляет 2—5 км сек. [c.241]

    При наличии химической реакции, идущей в волне горения, сопровождающей ударную волну, внутренняя энергия газа, кроме энергии сжатия, включает также химическую энергию, выделяющуюся в результате реакции. Обозначив энергию, выделяющуюся при превращении 1 г вещества, через Ж, в этом случае вместо уравнений (47.1) будем иметь так называемую детонационную адиабату т [c.241]


    Дальнейшее развитие теории стационарной детонационной волны было получено в работах Зельдовича, Деринга и Неймана, использовавших для определения условий, обеспечивающих стационарное распространение волны, представление о конечной длительности реакции в детонационной волне [157]. При этом должно вьшолняться следующее условие поджигающая газ ударная волна должна распространяться по газу со скоростью, равной скорости детонации. [c.141]

    Однако расширение газа, сопровождающее сгорание, само может приводить к сжатию и нагреванию новых, еще холодных слоев взрывчатой среды и ее воспламенению. Расширяющиеся продукты реакции играют роль сжимающего поршня. Возникает комплекс из ударной волны и следующей за нею зоны быстрой реакции в газе, агретом ударной волной. Расширение газа вследствие тепловыделения в этой зоне поддерживает устойчивое существование ударной волны. Такой комплекс, именуемый детонационной волной, стационарен, он распространяется без изменения структуры на неограниченном протяжении. [c.35]

    Обычно детонационная волна возникает как результат местного взрыва в горючей смеси. В области взрыва развиваются весьма высокие давления и от нее устремляется очень сильная ударная волна. При прохождении через холодную горючую смесь эта волна, как указывалось выше, вызывает значительный разогрев газа и может довести его до воспламенения. Именно в этом случае за фронтом ударной волны следует область горения, образующая в совокупности с ударной волной волну детонационную. Так как вблизи центра взрыва скорость распространеняя волны и интенсивность ее очень велики, то относительные скорости газа в начале области горения и в конце ее близки между собой и существенно ниже критической скорости  [c.222]

    В данной статье преследуется цель расширить ранее полученные результаты и достичь условий, которые, по всей вероятности, преобладают при зажигании рудничного газа в результате воздействия горячих детонационных газов. Детонация взрывчатого вещества сопровождается возникновением ударной волны, которая может зажечь рудничный газ, находяшийся на ее пути. Этот источник зажигания в данной работе мы не будем исследовать. Зажигание раскаленными частицами также не будет рассматриваться. В этой работе будет рассмотрен процесс со струен горячих газов, обычно движущихся за ударной волной. Это именно та струя, которая обычно зажигает атмосферу рудничного газа, хотя детали самого процесса зажигания до настоящего времени еще не вполне выяснены. В данном исследовании сделана попытка воспроизвести условия этого процесса зажигания в малом масштабе и, таким образом, получить возможность подробно его изучить, изменяя параметры горячей струи и атмосферы рудничного газа в пределах, соответствующих реальным условиям. Были изучены следующие факторы состав атмосферы рудничного газа и его влияние на процесс зажигания содержание кислорода в окружающей атмосфере, поскольку было предложено использовать его в качестве меры зажигательной способности взрывчатого вещества влияние на процесс зажигания турбулентности горячей струи изменения в процессе зажигания, которые происходят, если вводимые горячие газы содержат либо кислород, либо несгоревшее топливо, воспроизводящие условия в детонационных газах, образующихся при детонации взрывчатых веществ в атмосфере ири недостатке или избытке кислорода (например, известно, что детонационные газы от некоторых технических взрывчатых веществ содержат до 20% окиси углерода и до 30% водорода). Необходимо было исследовать многие процессы зажигания углеводородов, отличных от метана, который обладает более высокой температурой зажигания, чем какие-либо другие топлива, в связи с чем возникали дополнительные экспериментальные трудности. [c.54]

    Согласно Сардженту, поскольку нормальное распространение пламени в трубке протекает со скоростью меньше звуковой, давление по всему объему газа устанавливается быстрее, чем распространяется взрыв. Поэтому к моменту, когда нормальное распространение взрыва переходит в детонационное, газ находится под давлением большим, чем начальное [34, 42]. Давлеше же в плоскости Чепмена — Жугэ превышает именно это повышенное по сравнению с начальным давление в 20 раз в падающей волне и в 40—50 раз в отраженной волне в конце трубы. Этим объясняется тот факт, что измеренные давления детонации в 100 и даже в 200 раз превышали начальное давление. [c.459]

    Рассмотрим теперь вопрос о стадийности горения углерода в детонационной волне. В начальном периоде исследования детонации в газах в скорости детонационной волны видели величину, непосредственно отражающую количество выделившегося нри сгорании тепла. Так,сопоставляя скорости детонационной волны в смесях дициана разного состава (см. табл. 28), Диксон обратил внимание на то, что эквимолекулярной смеси соответствует не только наивысшая скорость (распространения) взрыва, но что разбавление этой смеси кислородом производит более сильное замедляющее действие, чем соответствующее разбавление азотом, ясно показывая этим,что весь избыточный сверх эквимолекулярного состава кислород является в самой детопациопиоп волне инертным газом (см. [52, стр. 176—177]). [c.320]

    Неустойчивость простейшей одномерной картины детонационной волны в газе в настоящее время твердо установлена на опыте. Заслуга Щелкина, Трошина и Денисова [32, 37, 38] велика, поскольку строгое теоретическое описание этой неустойчивости до-сих пор отсутствует. [c.584]

    Являясь экзотермическим соединением, ацетилен в опеределен-ных условиях способен к взрывному разложению в отсутствие кислорода или других окислителей. При этом выделяется энергия (8,7 МДж/кг), которой достаточно, чтобы разогреть продукты реакции до 2800 °С. Ацетилен способен к самопроизвольному разложению при горении, взрыве, детонации и каскадном разложении. Конечное давление газов зависит от характера разложения. При взрыве скорость распространения пламени достигает нескольких метров в секунду, а конечное давление, являясь функцией развиваемой температуры, возрастает по сравнению с начальным в 8—12 раз. Давление детонационной волны до ее отражения от стенки (а также от торца, изгиба и т. д.) может увеличиться в 30 раз, а в отражаемой волне в 50-—100 раз. [c.20]

    Пркчина лп зозпикновепия последующих детонационных процессов разложения могло служить наличие участков с оптимальным для детонации составом газов, встреча с отраженной ударно11 волной, повышение давления (что в значительной степени способствовало переходу горения в детонацию) и изменение проходного сечения трубопровода, [c.206]

    При возбуждении ударной волны в химически реагирующем горючем газе под влиянием адиабатического сжатия смеси наряду с ударной волной возникает волна горения. Совокупность этих волн представляет собой детонационную волну. В детонационной волне потери на трение и теплоотдачу при ее движении по трубе компенсируются энергией, выделяющейся в волне горения. Благодаря этому при распространении по трубе детонационной волны становится возможным стационарный режим, когда скорость детонации (О) остается постоянной. Условие существования стационарного режима определяется правилом Чемпена — Жуге, согласно которому стабильность детонационной волны достигается, если скорость потока сжатого газа за фронтом детонационной волны равна или выше скорости звука в этом газе. Правило Чемпена — Жуге позволяет найти на адиабате Гюгоньо точку с такими значениями Рг и Уг, которые обеспечивают стабильность детонационной волны и позволяют вычислить скорость детонации В  [c.141]

    Чрезвычайно показательно, что кинетическая модель реакции и описанное поведение системы в области атмосферных давлений и температур 1000 К в реальных условиях в значительной мере определяет гидродинамический механизм воспламенения и горения газа в детонационных волнах. Многочисленные экспериментальные наблюдения и теоретический анализ течения газа в зоне химической реакции, инициируемой нагревом газа за ударным фронтом плоской детонационной волны, показывают, что одномерная и стационарная схема течения в такой зоне неустойчива. На практике реализуется локально нестационарная и многофронтовая модель детонационного горения 1119, 1521, в которой термическое состояние ударно нагретого газа варьируется в достаточно широких пределах — от 900 до 3000 К вместо 1800 К, характерных для стационарной детонационной волны Чепмена — Жуге. Это изменение температуры обычно представляется в виде непрерывного распределения вдоль искривленного [c.305]

    Таким образом, предельные кинетические явления становятся определяющим фактором в осуществлении в реальных условиях многофронтовой физико-химической модели детонационного горения — явления, достоверность и универсальность которого сейчас уже не вызывает никаких сомнений. Интересно отметить, что и в условиях воспламенения за фронтом детонационных волн определенную роль может играть также изменение условий в газе перед включением процесса. Было замечено, что, как [c.306]


Смотреть страницы где упоминается термин Волны детонационные в газах: [c.222]    [c.320]    [c.72]    [c.486]    [c.309]    [c.309]    [c.103]    [c.88]   
Теория горения (1971) -- [ c.194 ]




ПОИСК







© 2025 chem21.info Реклама на сайте