Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детонационное сгорание

    История развития квалификационных методов оценки эксплуатационных свойств нефтепродуктов, по мнению К. К. Папок [18], началась именно с нефтяных топлив в начале XX века, когда на пути развития бензиновых двигателей внутреннего сгорания возникла проблема детонационного сгорания топлива. Первым квалификационным методом был метод определения октановых чисел бензинов на одноцилиндровой установке Во-кеш, разработанной в 1927 г. Как известно, метод октановых чисел получил распространение во всем мире, с ним было связано проведение широких исследований и решение серьезных проблем в области детонации. В 40-х годах в связи с необходимостью предотвращения загрязнения деталей двигателей углеродистыми отложениями была начата интенсивная разработка квалификационных методов оценки качества смазочных масел. [c.15]


    Все внешние признаки и проявления детонации хорошо известны, однако, причины возникновения и механизм этого явления до сего времени выяснены не полностью. Существует несколько теорий, объясняющих сущность детонационного сгорания, но наиболее общепризнанной из них в настоящее время является так называемая перекисная теория. [c.65]

Рис. 142. Зависимость содержания окислов азота в отработавших газах [29 ] от состава смеси при нормальном и детонационном сгорании в двигателе. Степень сжатия 8,5 коэффициент наполнения 0,9 скорость вращения коленчатого вала 1200 об/мин Рис. 142. <a href="/info/641926">Зависимость содержания</a> <a href="/info/1002021">окислов азота</a> в отработавших газах [29 ] от состава смеси при нормальном и детонационном сгорании в двигателе. <a href="/info/26987">Степень сжатия</a> 8,5 <a href="/info/402268">коэффициент наполнения</a> 0,9 <a href="/info/13684">скорость вращения</a> коленчатого вала 1200 об/мин
    Основные физико-химические свойства топлив, в том числе бензинов, и влияние этих свойств на работу топливной системы летательного аппарата и двигателя были подробно рассмотрены в гл. П1. Однако учитывая особенности сгорания бензинов в поршневых авиационных двигателях, связанные с возможностью детонационного сгорания, следует более подробно рассмотреть антидетонационные характеристики бензинов. [c.99]

    Детонация топлива — это сгорание его в двигателе со скоростью распространения пламени примерно в 100 раз большей, чем при нормальном сгорании. Признаками детонационного сгорания топлива в двигателе являются характерный резкий металлический стук в цилиндрах, тряска двигателя, дымный выхлоп и падение мощности. Сильная детонация приводит к перегреву двигателя, пригоранию колец, подгоранию поршней и клапанов, разрушению подшипников ИТ. п. [c.173]

    В поршневых двигателях с электрическим зажиганием отложения нагара на стенках камеры сгорания приводят к перегреву днища поршней, возникновению термических напряжений, вызывающих образование трещин, в нередких случаях обнаруживается прогорание днищ поршней. По причине уменьшения объема камеры сгорания увеличивается степень сжатия двигателя, а недостаточный отвод тепла через слой нагара охлаждающей жидкостью создают условия для возникновения процесса неуправляемого горения рабочей смеси — детонации, Пониженны отвод тепла от деталей камеры сгорания, покрытых слоем нагара, повышает требования устойчивости бензина и топливного газа детонационному сгоранию. За счет значительного нагрева частичек нагара, находящегося на стенках камеры сгорания и днища поршня, может возникнуть калильное зажигание рабочей смеси. [c.38]


    Детонация возникает вследствие самовоспламенения части ТВС, до которой фронт пламени от свечи доходит в последнюю очередь. Внешне детонация проявляется в возникновении звонких металлических стуков при работе двигателя на больших нагрузках. При интенсивной детонации мощность двигателя падает и появляется черный дым в отработавших газах. Регулярное возникновение детонации может привести к разрушению и сплавлению головок поршней, к повреждению шатунных и коренных подшипников коленчатого вала. Детонационное сгорание сопровождается резким возрастанием амплитуды вибраций с частотой 5000—6000 Гц [164]. [c.151]

    Механизм возникновения детонационного сгорания в ДВС был подробно исследован А. С. Соколиком [21, 165]. [c.151]

    Эффективным средством увеличения наддува, предотвращения детонационного сгорания газа и снижения интенсивности нагарообразования в ГМК является искусственное охлаждение наддувочного воздуха. Практически это может быть осуществлено впрыскиванием воды (конденсата) в различные элементы всасывающей системы моторных цилиндров ГМК. [c.229]

    На некоторых режимах работы автомобиля, обычно связанных с большой нагрузкой, при использовании бензина, качество которого не полностью отвечает требованиям двигателя, может возникнуть особый вид сгорания рабочей смеси, так называемое детонационное сгорание. Такое сгорание сопровождается появлением характерного звонкого металлического стука, повышением дымности выхлопа и увеличением температуры в цилиндрах двигателя. [c.65]

    Основные положения перекисной теории детонации позволяют объяснить влияние различных факторов на возникновение детонационного сгорания в двигателе и помогают наметить пути борьбы с этим явлением. [c.70]

    Изложенные выше представления о цепном механизме детонационного сгорания основаны на трудах акад. Н. Н. Семенова и подтверждаются многочисленными экспериментальными данными. [c.67]

    Рис. 20 иллюстрирует исследования перемещения фронта племени при нормальном и детонационном сгорании смеси в специаль-. [c.67]

    Внешние признаки детонационного сгорания мы уже отмечали характерный стук, дымный выхлоп и перегрев двигателя. [c.68]

    Эти положения хорошо объясняют влияние на возникновение детонационного сгорания таких показателей, как степень сжатия двигателя, форма камеры сгорания, диаметр цилиндра, материал поршней и головки блока цилиндров, наличие отложений нагара, угол опережения зажигания, число оборотов коленчатого вала, температура и влажность окружающего воздуха, состав смеси, температура охлаждающей жидкости и т. д. [31—35]. [c.71]

    Поверхностное воспламенение по своему характеру принципиально отличается от детонационного сгорания, хотя эти явления в условиях работы автомобильного двигателя тесно связаны. Однако процесс сгорания смеси после калильного зажигания протекает с нормальными скоростями и может не сопровождаться детонацией. [c.72]

    Воспламенение рабочей смеси от гор ячей точки до появления искры зажигания действует на процесс сгорания так же, как установка более раннего угла опережения зажигания, т. е. способствует возникновению детонации. С другой стороны, детонационное сгорание вызывает значительное повышение температурного режима двигателя, способствует появлению горячих точек в камере сгорания и возникновению калильного зажигания. Таким образом, калильное зажигание и детонация тесно связаны между собой и часто оба явления имеют место в двигателе в одно и то же время, но механизм протекания этих процессов и меры борьбы с ними существенно различаются. [c.72]

    Внешними проявлениями детонационного сгорания являются характерные металлические стуки и появление из выхлопных натруб- [c.204]

    Для оценки детонации используются практически все характерные проявления детонационного сгорания бензинов в двигателях повышение скорости сгорания и нарастания давления, увеличение температур газа и стенок камер сгорания, вибрация газа и корпуса двигателя, появление специфических продуктов преддетонационных реакций, изменение характера выхлопа, резкое уменьшение мощности и др. Некоторые из этих проявлений детонации используются только для исследовательских целей, другие — для количественного измерения уровня детонации в контрольных приборах и установках [1-11]. [c.90]

    Весьма эффективным средством подавления детонации является впрыск воды во впускную систему двигателя. Однако вода — не антидетонатор. Попадая в камеры сгорания двигателя, она испаряется, и пар нагревается за счет тепла, выделившегося при сгорании смеси. Впрыск воды снижает температуру в камерах сгорания и охлаждает детали цилиндро-поршневой группы. Снижение температуры в камерах сгорания уменьшает скорость окислительных реакций, предшествующих детонации, и предотвращает возможность детонационного сгорания. Экспериментами показано, что впрыск воды снижает требования к антидетонационным свойствам бензинов на 7—10 октановых единиц. [c.129]


    На некоторых режимах работы двигателя при использовании бензина, качество которого не полностью отвечает требованиям двигателя, может возникнуть так называемое детонационное сгорание рабочей смеси. Для объяснения механизма детонации в двигателях предложено несколько теорий, но наиболее признанной из них является пероксидная теория с цепным механизмом. В основе теории лежат труды выдающихся русских ученых А. Н. Баха и Н. Н. Семенова. [c.9]

    Если в двигателе используется такой бензин, в составе которого преобладают углеводороды, не дающие при окислении большого количества пероксидных соединений, то концентрация пероксидов в последних порциях смеси не достигает критических величин, и сгорание заканчивается нормально, без детонации. Если при окислении бензина в последних порциях смеси накапливается много пероксидных соединений, то при некоторой критической концентрации происходит их взрывной распад с последующим самовоспламенением. Появляется новый фронт горячего пламени, двигающийся по нагретой активной смеси, в которой предпламенные реакции близки к завершению. При этом появляется детонационная волна сгорания, имеющая скорость 2000—2500 м/с. Одновременно с появлением очага детонационного сгорания возникает новый фронт ударной волны. Многократное отражение ударных волн от стенок камер сгорания рождает характерный звонкий металлический стук высоких тонов. При детонационном сгорании двигатель перегревается, появляются повышенные износы цилиндро-поршневой группы, увеличивается дымность отработавших газов. [c.10]

    Детонационное сгорание сопровождается повышением дымности отработавших газов и увеличением их температуры в цилиндрах двигателя. Главная опасность детонации заключается в повышении передачи теплоты от сгоревших газов к стенкам камеры сгорания и днищу поршня. Повышенная теплопередача приводит к местному перегреву двигателя, может вызвать отдельные разрушения камеры сгорания и днища поршня. Первоначально они выражаются в появлении на поверхности металла небольших щербинок. Часто при этом происходит разрушение кромок прокладки между цилиндром и головкой, завершающееся ее прогоранием. Характерно, что такие разрушения появляются во вполне определенных для данного двигателя местах. Следует отметить, что еще до появления каких-либо видимых разрушений работа двигателя с детонацией приводит к повышенному износу основных деталей. В некоторых случаях долговечность двигателя снижается в 1,5-3 раза. Перегрев двигателя от детонации способствует нарушению его теплового режима и ведет к перерасходу топлива. [c.160]

    Детонационная стойкость является одним из основных требований к качеству автомобильных и авиационных бензинов. При детонационном сгорании топлива скорость распространения пламени примерно в 100 раз превышает скорость распространения пламени при нормальном сгорании. Сильная детонация приводит к перегреву двигателя, пригоранию колец, поршней и клапанов, разрушению подшипников и т. д. [1—4]. [c.11]

    Октановое чнсло до 100, определенное по температурному методу, численно равно процентному (по объему) содержанию изооктапа (2,2,4-триметил-пентана) в такой смеси его с к-гептаном, которая по температуре детонационного сгорания эквивалентна испытуемому топливу ири испытании его на специальном одноцилиндровом двигателе в стандартных условиях. [c.628]

    Аппаратура для замера детонации. При температурном методе детонацию замеряют по средней темнературе стенок камеры сгорания при детонационном сгорании топлива. [c.629]

    Весьма эффективным средством подавления детонации является вода, впрыскиваемая во впускную систему двигателя. Однако вода — не антидетонатор. Попадая в камеры сгорания двигателя, она испаряется, пар нагревается за счет тепла, выделявшегося при сгорании топлива. В результате температура в камерах сгорания снижается и детали цилиндро-поршневой группы охлаждаются. Вследствие этого уменьшается скорость окислительных реакций, предшествующих детонации, и предотвращается возможность детонационного сгорания рабочей смеси. Экспериментами показано, что впрыск воды в камеры сгорания снижает требования двигателя к антидетонационным свойствам бензинов на 7—10 единиц. [c.40]

    Экспериментальное изучение процессов горения топлив и применения смазывающих материалов подтверждает вышеуказанные закономерности. С точки зрения физико-химической технологии скорость сгорания во многом зависит от удельной поверхности ССЕ. При значительной поверхности происходиг быстрое сгорание возникающих ССЕ с образованием ударных волн, распространяющихся со сверхзвуковой скоростью (детонационное сгорание). Предотвратить это явление, т. е. снизить [c.216]

    Склонность бензинов к калильному зажиганию. При полной оценке качества автобензинов определяют также их способность к калрльному зажиганию — косвенный показатель склонности к нагарообразованию. Калильное число (КЧ) — показатель, характеризующий вероятность возникновения неуправляемого воспламенения горючей смеси в цилиндрах двигателя вне зависимости от момента подачи искры свечей зажигания. Оно связано с появлением "горячих" точек в камере сгорания (от металлической поверхности и нсгаров). Калильное зажигание делает процесс сгорания неуправляемым. Оно сопровождается снижением мощности и топливной экономичности двигателя и т.д. Калильное зажигание принципиально отличается от детонационного сгорания. Сгорание рабочей смеси после калильного зажигания может протекать с нормальными скоростями без детонации. КЧ выше у ароматических углеводородов (у бензола 100) и низкое у изопарафинов. ТЭС и сернистые соединения повышают склонность бензина к отложениям нагара. Основные направления борьбы с калильным зажиганием — это снижение содержания ароматических углеводородов в бензине, улу шение полноты сгорания путем совершенствования конструк — ций ДВС и применение присадок (например, трикрезолфосфата). [c.109]

    II дизеле впрыскивается только к концу такта сжатия) полностью страняется опасность возникновения детонационного сгорания  [c.114]

    Возникновение детонационного сгорания связано с особенностями протекания нредпламенных химических реакций в последней части заряда топливно-воздушной смеси и образования в этой части заряда высокой концентрации активных частиц, весьма склонных к взрывному сгоранию. [c.204]

    Ускоренный износ деталей ГМК ЮГКН, оборудованных системой испарительного ВТО, происходит по следующим причинам ГМК ЮГКН, форсированный наддувом при /7к=1,7 кгс/см2, имеет 8=7,0 Ре=6,0 кгс/см . Повышенные показатели г я ре ГМК ЮГКН (сравнительно с аналогичными показателями ЮГК без наддува) и высокая температура охлаждающей воды tгo= = 120- 125°С при испарительном ВТО привели к росту тепловой напряженности деталей и возникновению самовоспламенения или детонационного сгорания топливного газа, разжижению масла на зеркале стенок цилиндров и увеличению износа деталей в 2—5 раз. [c.226]

    Исследованиями на установке ДК-2 с 1)ц=120 мм и Оср = 5- 8 м/с со свободно движущимися поршнями, выполненными в Институте газа Академии Наук УССР, установлена зависимость между параметрами конца сжатия (рс и Тс) и пределами самовоспламенения газовоздушной смеси различного состава, оцениваемого коэффициентом избытка воздуха а. При этом установлено, что метано-воздушные смеси с а= l,03-f-l,06 воспламеняются при незначительных рс и Тс- Чем выше начальная температура метано-воздушной смеси, тем при более низком давлении рс происходит ее самовоспламенение. Для предотвращения самовоспламенения и детонационного сгорания предлагается обеднять горючую смесь и снижать температуру заряда в начале сжатия. Этому требованию хорошо удовлетворяет внутреннее охлаждение заряда при подаче в поток продувочного воздуха охладителя. [c.227]

    Первая одноцилиндровая установка с переменной степеньк сжатия была создана Г. Рикардо в начале 20-х годов, и на этой установке была разработана первая методика оценки детонационной стойкости топлив по так называемой критической или наивысшей полезной степени сжатия, при которой начинается слышимая детонация [1 ]. Таким образом, уже в первом методе оценки детонационной стойкости бензинов детонация вызывалась за счет увеличения степени сжатия. В дальнейшем для инициирования детонации применялись фактически все параметры режима работы двигателя (дросселирование, наддув, число оборотов, состав смеси, угол опережения зажигания, температурный режим и т. д.), однако до сего времени изменение степени сжатия является основным фактором для создания условий детонационного сгорания в лабораторных методах оценки антидетонационных свойств бензинов. [c.91]

    В результате осуществляемых усовершенствований двигателей тепловой режим их повышается. Рабочая смесь в камере сгорания в конце такта сжатия становится более подготовленной к воспламенению. Может произойти самопроизвольноех(неуправляемое) воспламенение рабочей смеси независимо от вымени подачи искры свечей зажигания. Это явление, нарушающее нормальный процесс сгорания, получило название поверхностного воспламенения или калильного зажигания. Источниками воспламенения могут служить перегретые выпускные клапаны, свечи, кромки прокладок, тлеющие частички нагара и т. п. Калильное зажигание, нарушая нормальное протекание сгорания, делает процесс неуправляемым, снижает мощность и ухудшает топливную экономичность двигателя. Калильное зажигание принципиально отлично от детонационного сгорания, хотя эти явления в условиях работы двигателя тесно переплетаются. Сгорание смеси после калильного зажигания протекает с нормальными скоростями и может не сопровождаться детонацией [1]. [c.16]

    Детонационная стойкость. Детонацией называется особый режим сгорания топлива в двигателе. Она появляется в тех случаях, когда после воспламенения топливно-воздушной смеси сгорает только часть топлива. Остаток (до 20%) топливного заряда мгновенно самовоспламеняется при этои скорость распространения пламени достигает 1500—2500 вместо 20—30 м/с, а давление нарастает скачками. Резкий перепад давления приводит к образованию детонационной волны, которая ударяется о стенки цилиндра двигателя. Характерные признаки детонации металлический стук, вызываемый многократным отражением детонационных волн от стенок цилиндра, появление в выхлопных газах клубов черного дыма, резкое повышение температуры стенок цилиндра. Детонационное сгорание топлива приводит к повышению удельного расхода топлива, уменьшению мощностг и перегреву двигателя, прогару поршней и выхлопных клапаноп, а в конечном счете к быстрому выводу двигателя из строя. [c.338]

    Молекула неогексаиа содержит только одну группу СНо, которая экранирована трудно окисляющимися метильными группами, чтс снижает вероятность окисления атомов водорода метиленовой группы. Поэтому, если в беизине имеется повышенное содержание н.-парафинов, котщентрация гидроперекисей в горючей смеси может быть значительной, и гидроперекиси могут подвергаться взрывному разложению еще до того, как искра будет введена в горючую смесь. После ввода искры и воспламенения топлива образование и разложе[П1е гидроперекисей может продолжаться перед фронтом пламени, поэтому горение топлива будет неравномерным и может завершиться мг юиенны.м воспламенением рабочей смеси (детонацией), Если скорость нормального бездетонаиионного сгорания 20— 30 м сек, то скорость детонационного сгорания 1,5—2 км сек. Удар такой взрывной волны вызывает стук в двигателе и приводит к быстрому его износу. [c.55]

    Рассмотрим более подробно эти детонационные свойства бензина. При искровом зажигании в цилиндре мотора некоторые углеводороды сгорают со взрывом. Распространение пламени происходит при этом с большой скоростью (до 2—2,5 тыс. м1сек), вследствие чего образуется ударная волна. Такое детонационное сгорание топлива нарушает нормальную работу двигателя и снижает его мощность. Кроме того, детонационное сгорание приводит к более быстрому износу частей двигателя — поршней, стенок камеры сгорания, выхлопных клапанов и др. Сгорание со взрывом наблюдается у бензинов, состоящих из нормальных углеводородов. [c.257]


Библиография для Детонационное сгорание: [c.605]   
Смотреть страницы где упоминается термин Детонационное сгорание: [c.103]    [c.259]    [c.68]    [c.91]    [c.54]    [c.54]    [c.166]    [c.145]    [c.518]    [c.518]    [c.15]   
Смотреть главы в:

Автомобильные бензины. Свойства и применение -> Детонационное сгорание

Автомобильные бензины свойства и применение -> Детонационное сгорание


Краткий справочник по горючему (1979) -- [ c.18 ]




ПОИСК







© 2025 chem21.info Реклама на сайте