Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волна горения

    Хотя для описания кинетики цепных разветвленных взрывных реакций есть различные механизмы, совершенно отличные от чисто тепловых взрывов, формально зависимости пределов воспламенения от температуры совпадают. Механизм распространения разветвленного взрыва в виде медленной волны горения должен быть связан скорее о диффузией радикалов, ведущих цепь, а не с диффузией тепла. Зельдович [54] показал, что в первом приближении можно считать, что градиенты концентрации и температуры пропорциональны друг другу. В этих условиях формальные уравнения для распространения волны будут одинаковы для обоих механизмов взрыва и совершенно независимо от цепного механизма градиенты концентрации и температур в пламени будут пропорциональны друг другу во всех точках. С физической точки зрения это вполне вероятный результат, потому что наиболее резкие перепады температур должны проявляться там, где скорость реакции наибольшая, что в свою очередь вызывает образование максимальных концентраций продуктов. [c.399]


Рис. 5.19а. Зависимость экстремальной величины приведенной скорости распространения волны горения от тепловой характеристики смеси Рис. 5.19а. Зависимость экстремальной величины приведенной <a href="/info/537054">скорости распространения волны</a> горения от <a href="/info/404750">тепловой характеристики</a> смеси
    Сжатие и нагрев несгоревших газов ударной волной привадит к воспламенению. В этом случае во взрывной зоне в свою очередь выделяется большое количество тепла, которого почти достаточно для того, чтобы поддержать стационарную ударную волну. Если допустить, что между концом ударного фронта и началом взрывной волны имеется небольшая зона, где не идет никакой реакции, то газы в этой области будут более горячими, чем несжатые газы, и более плотными в результате большого давления. Следовательно, их локальная поверхностная скорость относительно ударного фронта меньше, чем скорость несжатых газов перед фронтом. Последующая химическая реакция, хотя и нагревает газы, по они сохраняют более высокую плотность, а следовательно, и более низкую скорость по сравнению с несгоревшими газами. Таким образом, относительно фронта детонации продукты горения удаляются с объемной скоростью, меньшей, чем скорость несгоревших газов. Это противоположно положению для обычной волны горения. Профиль одномерной детонационной волны схематично изображен на рис. XIV. . [c.405]

    Б стационарной детонационной волне ударный фронт сопровождается зоной химической реакции (см. рис. XIV.7). Волна горения характеризуется уменьшением давления и увеличением температуры вдоль фронта пламени. Поскольку в стационарном состоянии фронт пламени должен следовать за ударным фронтом на определенном расстоянии, модель движущейся поверхности не является вполне пригодной для описания стационарной детонации. [c.409]

    Движение пламени по газовой смеси, называемое распространением пламени, бывает двух типов детонационная волна и волна горения. [c.32]

    Волна горения распространяется посредством теплопередачи и диффузии активных молекул от фронта пламени, последовательно преобразовывая несгоревший газ в продукты сгорания. Скорость распространения волны горения значительно ниже скорости звука, а разностью давления перед и за фронтом волны можно пренебречь. [c.33]


    Горение твердого топлива в печах осуществляется послойно. При послойно.м процессе реакция протекает в узкой зоне, разделяющей исходные реагенты от разогретых продуктов реакции, и самопроизвольно перемещается по слою вещества с определенной скоростью в виде волны горения. [c.35]

    Таким образом, возникающая при детонации ударная волна сопровождается волной горения обе волны, в совокупности образующие детонационную волну, распространяются в газе с некоторой скоростью (скорость детонации), которая значительно превосходит нормальную скорость пламени и обычно составляет 2—5 км сек. [c.241]

    При наличии химической реакции, идущей в волне горения, сопровождающей ударную волну, внутренняя энергия газа, кроме энергии сжатия, включает также химическую энергию, выделяющуюся в результате реакции. Обозначив энергию, выделяющуюся при превращении 1 г вещества, через Ж, в этом случае вместо уравнений (47.1) будем иметь так называемую детонационную адиабату т [c.241]

    Это верно для того случая, когда реакция протекает однородно по объему газовой смеси. В случае образования распространяющейся по смеси волны горения возможно возникновение взрывных процессов со значительно большим избыточным давлением. Так, в случае детонации избыточное давление в проходящей волне может достигать 2 МПа а давление, действующее на элементы конструкции, может быть порядка 10 МПа за счет отражений и в случае инициирования локальных взрывов поджатой смеси. - Прим. ред. [c.276]

    Для понимания процессов, происходящих в начальный период инициирования волн горения и детонации разработана теория устойчивости процессов возникновения и распространения физико-химических волн в аэрированных, в том числе содержащих высокоэнергетические материалы средах. С помощью разработанных компьютерных программ осуществлено моделирование волн тепловой и гидродинамической природы и проведено исследование влияния их параметров на инициирование и устойчивость распространения волновых процессов в экзотермических системах. Подробно рассмотрено инициирование химической реакции с помощью мощного потока лазерного излучения. Изучено влияние характеристик ЭМ и условий воздействия внешнего теплового импульса на возможность воспламенения, охвата горением значительного объема взрывоопасного вещества и развития процесса до взрыва. Осуществлено моделирование процесса воспламенения и горения ЭМ под действием потока теплового излучения, генерируемого с помощью современных лазерных установок. Рассмотрены аномалии воспламенения и гашения горящего ЭМ при действии импульса лазерного излучения. Разработан механизм воспламенения и горения ЭМ, содержащих высокополимерные энергоемкие компоненты. Ис- [c.84]

    Волны горения, у которых конечные состояния находятся на линии ВЕ,— это слабые волны горения, а волны, у которых конечные состояния лежат па линии ЕР,— это сильные волны горения. Изменения давления и скорости в сильной волне горения превышают соответствующие изменения в слабой волне горения. Предельными случаями являются сильная волна горения с р = О, которая [c.52]

    Из анализа структуры волны горения в пункте в 2 главы 6 показано, что сильная волна горения не может осуществляться поэтому участок ОЕ ветви горения на кривой Гюгонио не имеет физического смысла. В большей части случаев волны горения фактически близки к изобарической волне. [c.53]

    Скорость горения Уц можно связать с толщиной пламени следующим образом. Масса горючей смеси, втекающая через единицу площади поверхности пламени за единицу времени, равна р(,г-ц, где — плотность исходной горючей газовой смеси. В волне горения реагирующая смесь расходуется со скоростью, равной гед (масса на единицу площади за секунду). Из закона сохранения массы следует, что роУ,, = гид, откуда с учетом формулы [c.140]

    Как было указано Сполдингом [ ], анализ некоторых аспектов проблемы распространения волн горения, тех, при рассмотрении которых оказывается существенным [c.144]

    Г. Упрощение уравнения сохранения энергии и уравнения диффузии в случае мономолекулярной реакции в бинарной смеси. Соотношения (7) и (8) определяют 2Л дифференциальных уравнений, поэтому исследование структуры волны горения в общем случае весьма сложно. Если же имеет место только одна химическая реакция [т. е. в уравнении (1.8) М =11, то формула (7) определяет [c.146]

Рис. 5. Типичные распределения параметров потока в волне горения. Рис. 5. Типичные <a href="/info/117115">распределения параметров потока</a> в волне горения.

    Выше были рассмотрены условия применимости уравнений (18) и (19). Эти два уравнения описывают структуру детонационной волны ЗНД в том случае, когда в волне протекает произвольная одноступенчатая реакция и выполнены предположения (1) — (8) из 3 главы 5 ). Однако при использовании определяемых формулами (18) и (19) решений возникают некоторые неясности. При математическом рассмотрении ударная волна занимает область от = —оо до I = +оо, в то время как пламя занимает область от некоторого конечного значения I до = +00 (для функций Аррениуса). Следовательно, две волны перекрываются, и для того, чтобы получить единственное решение задачи о структуре детонационной волны, необходимо в некоторой точке оборвать ударную вол-ну и сшить ее с началом волны горения. Точка обрыва может быть определена как точка, в которой выполняется условие [c.212]

    При возбуждении ударной волны в химически реагирующем горючем газе под влиянием адиабатического сжатия смеси наряду с ударной волной возникает волна горения. Совокупность этих волн представляет собой детонационную волну. В детонационной волне потери на трение и теплоотдачу при ее движении по трубе компенсируются энергией, выделяющейся в волне горения. Благодаря этому при распространении по трубе детонационной волны становится возможным стационарный режим, когда скорость детонации (О) остается постоянной. Условие существования стационарного режима определяется правилом Чемпена — Жуге, согласно которому стабильность детонационной волны достигается, если скорость потока сжатого газа за фронтом детонационной волны равна или выше скорости звука в этом газе. Правило Чемпена — Жуге позволяет найти на адиабате Гюгоньо точку с такими значениями Рг и Уг, которые обеспечивают стабильность детонационной волны и позволяют вычислить скорость детонации В  [c.141]

    Неизвестно, что действительно происходит при детонации. Однако спектрографическими и фотографическими исследованиями было установлено, что при нормальной вспышке в двигателе внутреннего сгорания возникает узкая идеально выпуклая волна горения, которая движется вдоль камеры сгорания в направлении от свечи зажигания волны имеют практически постоянную скорость (до 75 м1сек на величину скорости влияют различные факторы). При детонации фронт пламени изменяется только во время сгорания последней части сырья. Кроме того, пламя передвигается гораздо быстрее — со скоростью около 300 м сек. Очевидно также, что детонация возникает только после того, как большая часть горения завершена. [c.405]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]

Рис. 5.196. Завпсимость акст-ремальной величины числа М1 для распространенпя волны горения от тепловой характеристики смеси 1 — область нестационарной детонации, Рис. 5.196. Завпсимость акст-ремальной <a href="/info/39795">величины числа</a> М1 для распространенпя <a href="/info/90736">волны горения</a> от <a href="/info/404750">тепловой характеристики</a> смеси 1 — область нестационарной детонации,
    На примере бициклооктогена исследовано распределение температуры в волне горения подациклических нитраминов и предложен механизм горения. Показано, что отличительной чертой горения полициклических нитраминов является доминирующая роль реакций разложения в конденсированной фазе, приводящая к диспергированию вещества при низких давлениях. [c.120]

    В последующих главах изложение начинается с проблем, которые являются наименее сложными, и последовательно охватывает более сложные проблемы. Ни одно из рассмотренных в этой главе дифференциальных уравнений сохранения не потребуется в главе 2, в которой соотношения между характеристиками перед волной горения и за ней устанавливаются из уравнений сохранения, записанных в алгебраическом виде. В главе 3 исследуются системы, в которых важную роль играют процессы переноса, При этом члены уравнения (4), содержащие скорость химической реакции и определяемые выражением (8), не принимаются во внимание. Здесь оказывается полезным метод решения задачи, развитый в 4. Глава 4 посвящена задачам, в которых необходимо учитывать, что химические реакции протекают с конечной скоростью, а явлениями переноса можно пренебречь. (Явлениям переноса в уравнениях соответствуют члены с производными самого высокого порядка, появляющиеся в уравнениях (2) — (4) после использования формул (5) — (7).) Процессы, в которых необходимо учитывать одновременно как явления переноса, так и химические реакции, протекающие с конечными скоростями, впервые встретятся в главе 5 (теория ламинарного пламени) и далее в главе 6 при обсуждении вопроса о структуре и скоростях детонационых волн. [c.36]

    Прямая линия, проходящая через точку (1,1), не может пересекать дефлаграционную ветвь, если ее наклон превышает наклон касательной, и пересекает дефлаграционную ветвь в двух точках (один раз на ОЕ и один раз на ЕР), если ее наклон меньше наклона касательной. Следовательно, волна горения Чепмена — Жуге имеет максимальную скорость распространения ([х = д. ) среди всех волн обычного горения. Рис. 5 с очевидностью показывает, что максимальная скорость волны горения меньше, чем минимальная скорость детонации ( х < х ) этот результат может быть получен также из уравнения (26). [c.52]

    Маха для течения перед волной всегда превышает единицу для детонации Чепмена — Жуге и заключено между нулем и единицей для волны горения Чепмена — Жуге. Волнам Чепмена — Жуге соответствует минимальная скорость распространения в случае детонации и максимальная скорость распространения в случае горения. Следовательно, детонация всегда распространяется со сверхзвуковыми скоростями, а волна горения с дозвуковыми скоростями. [c.56]

    Ниже сначала кратко обсуждаются эксперименты и основные физические особенности явления. Затем формулируются основные дифференциальные уравнения, описывающие структуру волн горения. Далее, на примере детального исследования пламени с моноыолекулярной реакцией Я Р Н — реагент, Р — продукт реакции) выясняются основные особенности математической задачи о расчете скорости распространения одномерной волны лалшнарного пламени. Такой выбор реакции можно оправдать тем, что рассмотрение более сложных ила-мен обычно проводится путем обобщения результатов, полученных для мономолекулярных реакций. В последнем параграфе обсуждаются особенности проблемы в случае ценных реакций, в частности, устанавливается критерий возможности использования стационарного приближения для промежуточных реакций. Из изложения (см., например, пункт 2 3 пункт и, 4 пункт а, 2 5) станет очевидным, что до сих нор не разработаны удовлетворяющие всем требованиям математические методы, позволяющие проводить исследование плам н с учетом сложных явлений переноса и сложной химической кинетики. [c.136]

    Если приняты предположения (1) — (6) и в качестве направления координаты х выбрано направление по нормали к волне горения, то оказываются справедливыми уравнения (1.26), (1.27), (1.31) — (1.33), в которых следует положить 2 = Яз = 1 и, кроме того, в уравнении (1.32) отбросить последний член. Следовательно, можно чаписать [c.143]

    Вернемся к эксперименту, описанному в начале пункта а 2 главы 5. Если труба, содержащая горючую газовую смесь, достаточно длинная, то пламя, пройдя расстояние, равное (весьма приблизительно) пяти — десяти диаметрам трубы, начинает заметно ускоряться. Наблюдается переходная область с неустановившимся движением, затем появляется высокоскоростная ( 3-10 сде/сек) плоская волна горения, распространяющаяся с постоянной скоростью в оставшейся горючей смеси к концу трубы. Эта высокоскоростная волна является волной детонации, которая, как твердо установлено, распространяется со скоростью, соответствующей верхней точке Чепмена — Жуге (см. главу 2). [c.193]

    ПО потоку, соответствует распространяющейся с большой скоростью волне горения, в которой кинетическая энергия достаточно велика, а процессами переноса (вязкость, теплопроводность и диффузия) можно пренебречь. По-втому эта волна горения существенно отличается от волн, рассмотренных в главе 5. Различие связано главным образом с тем, что детонационная волна характеризуется гораздо большим значением массовой скорости (конвективной скорости). В этом случае потоки, обусловленные явлениями переноса, могли бы оказаться сравнимыми по величине с конвективными потоками только при наличии очень больших градиентов. Однако скорость химической реакции не является достаточно высокой для того, чтобы столь высокие значения градиентов могли быть достигнуты. Изменение параметров течения в этой волне горения показано на рис. 5, где ей соответствуют части кривых, расположенные справа. Вследствие больших значений скорости давление в области волны горения не остается постоянным (см. рис. 5). На рис. 5 видно небольшое уменьшение температуры при приближении к горячей границе. Этот эффект отсутствует у большинства сильных детонационных волн. Он наблюдается в волнах Чепмена — Жуге и связан с тем, что на линии Рэлея с добавлением тепла температура уменьшается (число Маха, конечно, растет) при числе Маха, заключенном между [c.211]

    Усовершенствованные экспериментальные методы позволили подробно исследовать переход горения в детонацию Установлено, что этот процесс включает ускорение волны горения, вызванное расширением горячих газов за волной, образование волн Маха перед пламенем, слияние волн Маха с последующим образованием ударных волн, развитие турбулентности впереди волны горения и внутри нее, обусловленное увеличением скоростей потока, и сложное взаимодействие многочисленных волн в образовавшемся турбулентном потоке, приводящее в конце концов к возникновению детонации Чепмена — Жуге. [c.222]

    Нестационарные сферические пламена [ 5-48] Рас пространение пламени в почти изотропном турбулентном потоке исследовалось в условиях, когда горючая смесь пропускалась через решетку, за которой смесь поджигалась через некоторые промежутки времени при помощи искры. Наблюдался рост сферической волны горения, которая сносилась потоком. Скорость увеличения радиуса волны, которая измерялась по фотографиям и при [c.232]


Смотреть страницы где упоминается термин Волна горения: [c.267]    [c.224]    [c.149]    [c.85]    [c.37]    [c.43]    [c.50]    [c.52]    [c.53]    [c.56]    [c.136]    [c.139]    [c.146]    [c.151]    [c.152]    [c.207]    [c.213]    [c.227]    [c.414]   
Горение (1979) -- [ c.13 ]

Органические покрытия пониженной горючести (1989) -- [ c.8 , c.9 ]




ПОИСК







© 2025 chem21.info Реклама на сайте