Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия сжатия

    Потенциальная энергия пласта выражается в следующих формах энергии напора краевых вод потенциальной энергии упругой деформации жидкости и породы пласта потенциальной энергии сжатия свободного и выделяющегося из жидкости при снижении давления газа энергии, обусловленной силой тяжести пластовых жидкостей. [c.33]


    Схема окисления с использованием колонн заключается в следующем. Сырье насосом подают в колонну под уровень жидкости. В нижнюю часть колонны через маточник подают компрессором воздух. Битум откачивают с низа колонны (отбор ниже маточника), отработанные газы выводятся с верха колонны из газового пространства. Перемешивание реагирующих газовой и жидкой фаз происходит за счет энергии сжатого воздуха. В результате перемешивания температуры выравниваются практически во всем объеме зоны реакции, что предопределяет возможность использования холодного сырья свежее сырье при поступлении в колонну смешивается с окисляемым материалом и нагревается за счет тепла реакции окисления. В случае глубокого окисления (получение строительных битумов, использование легкого сырья) охлаждения сырьем недостаточно, и необходимы системы дополнительного охлаждения [74]. [c.134]

    Давление пермеата, МПа Температура, К Фактор разделения Затраты энергии сжатие пермеата 0,1 МПа, кВт-ч/м Затраты чистого кислорода при смешении его с воздухом для получения газа заданного состава, кг [c.312]

    Энергию сжатой жидкости можно определить по формуле  [c.20]

    В пневматических вибровозбудителях используется энергия сжатого воздуха давлением (2 -7)-10 Па. Различают вибровозбудители с пульсатором, автоколебательные и др. [4]. Рабочий диапазон пневматических вибровозбудителей в зависимости от устройства охватывает частоту от 15 до 2000 Гц и соответственно амплитуду от 30 до 0,2 мм. [c.49]

    Примером может служить ХТС с так называемым агрегатом двигатель — насос — турбина (рис. 1-10). Газ под давлением поступает-в нижнюю часть колонны и контактирует с орошающей ее жидкостью. При этом газ выходит из колонны сверху, а жидкость снизу. Рядом с колонной расположен агрегат двигатель — насос — турбина, в котором двигатель, колесо турбины и рабочие колеса многоступенчатого насоса имеют общий вал. Насос подает жидкость на орошение колонны. Жидкость, вытекающая из нее и находящаяся под давлением, попадает на лопатки турбины, вращает колесо турбины и теряет энергию. Поскольку колеса турбины и насоса находятся на одном валу, энергия жидкости используется для работы насоса, т. е. для подачи жидкости на орошение колонны. Потери энергии компенсируются питанием электрической энергией двигателя. Аналогично используется энергия сжатых газов. [c.29]


    При наличии химической реакции, идущей в волне горения, сопровождающей ударную волну, внутренняя энергия газа, кроме энергии сжатия, включает также химическую энергию, выделяющуюся в результате реакции. Обозначив энергию, выделяющуюся при превращении 1 г вещества, через Ж, в этом случае вместо уравнений (47.1) будем иметь так называемую детонационную адиабату т [c.241]

    Таким образом, направляющий аппарат служит для полного или частичного преобразования потенциальной энергии сжатого газа в кинетическую, а рабочее колесо - для преобразования энергии газа (в общем случае и потенциальной, и кинетической) в механическую работу, передаваемую внешним телам. [c.129]

    Итак, принцип действия турбодетандера заключается в осуществлении процесса расширения газа с совершением внешней работы путем полного или частичного преобразования энергии сжатого газа в кинетическую энергию в направляющем (сопловом) аппарате и последующего преобразования энергии газа в механическую работу во вращающемся рабочем колесе. Этот процесс сопровождается понижением энтальпии газа, т.е. получением холода и передачей внешнему потребителю механической энергии. [c.129]

    Через отверстие, расположенное в верхней части камерного питателя 1, загружается материал. После заполнения камеры до определенной высоты Я закрывается клапан 2 и с помощью крана 4 через регулирующий вентиль 3 в нее подается сжатый воздух от компрессора 6 через ресивер 5. При достижении над слоем рабочего давления открывается запорное устройство 7, и начинается процесс разгрузки камерного питателя. Сыпучий материал затягивается в трубопровод за счет энергии сжатого газа, и чем выше давление газа в межзерновом пространстве, тем интенсивнее процесс разгрузки камерного питателя. Если это давление мало, то энергии газа может хватить только на то, чтобы продвинуть материал в трубопровод на несколько метров. Образуется завал. [c.80]

    За счет энергии сжатого газа материал продвигается по трубопроводу и поступает в отделитель 6. Выброс материала происходит до тех пор, пока накопленная энергия газа не иссякнет. После этого клапан 3 закрывают и цикл повторяется, причем время между циклами может быть произвольным. [c.86]

    Двигатели с компрессорным распыливанием топлива отличаются относительным постоянством давления газов в цилиндре в период сгорания, что и объясняет мягкую работу этих двигателей. Кривая изменения давления идет плавно. Использование для распыливания топлива энергии сжатого воздуха позволяет получать достаточно однородную рабочую смесь на самых различных топливах, начиная от нефтяных дестиллатных типа соляра и кончая тяжелыми каменноугольными смолами. [c.28]

Рис. 6.7. Использование части энергии сжатых систем для выработки электроэнергии в схеме мотор-насос-турбина Рис. 6.7. Использование <a href="/info/145509">части энергии</a> сжатых систем для <a href="/info/1885434">выработки электроэнергии</a> в схеме <a href="/info/157905">мотор-насос</a>-турбина
    Для обеспечения ритмичной работы предприятия с оптимальной скоростью химических реакций требуется поддерживать давление газа в элементах технологической линии постоянным. В пневматических воздушных системах предприятий также необходимо поддерживать давление на заданном уровне. Снижение давления в сети приводит к уменьшению полезной мощности и эффективности использования пневмоприемников повышение давления в сети обычно сопровождается срабатыванием автоматических устройств, обеспечивающих безопасность эксплуатации компрессорных установок. В результате эффективность использования энергии сжатого воздуха снижается. [c.275]

    Ршс.8.13. Принципиальная схема улавливания под давлением е использованием энергии сжатого газа 1 — коксовые печи 2 — газосборник 3 — блок первичного охлаждения 4 — сепаратор 5 — электрофильтр 6,7 — холодильники 8 — блок улавливания под авлением 9 — турбодетандер. К , К — I и II ступени компрессии II - привод внешний, ТД - турбодетандер а - прямой газ б -смола и конденсат в — охлажденный газ г — газ при 180°С - 0,3—0,4 МПа д - газ при 0 -0,4 МПа, 30-35°С < - газ при 0,8-1,2 МПа, 140°С ж - газ при 0,8-1,2 МПа, 35°С з - сжатый газ после улавливания и - газ при [c.295]

    Регуляторы непрямого действия используют поступающую извне энергию, т. е. энергию вспомогательного источника. В химической технике для регуляторов такого типа чаще всего примеряют энергию сжатого воздуха (пневматические регуляторы). В пневматическом регуляторе (рис. 1-9) чувствительный элемент — [c.18]


    Баланс этот можно также представить графически (рис. V-15). Энтальпии 1к соответствует точка К на изобаре рг (Х = 0), энтальпии д — точка R на изобаре pi (Хд). По известным правилам энтальпийной диаграммы отрезок DE обозначает подведенную энергию сжатия на 1 кг поступающего раствора (L/S), а отрезок KF — ту же энергию, но на 1 кг конденсата [Е/К) или на 1 кг сжатого пара. Та же величина L/K будет обозначена отрезком 1—2 на диаграмме i — 5 (энтальпия — энтропия) для водяного пара, если пар под давлением pi с температурой адиабатически сжимается до [c.383]

    В сумме энергию сжатия и тепло подогрева возвращаемого газа на единицу массы этого газа представляет отрезок 6—8, а расход энергии на единицу массы полученного аммиака — отрезок 5-С. [c.682]

    В третьем такте (рабочий ход) реализуется энергия сжатых продуктов сгорания, и во время четвертого такта цилиндр двигателя освобождается от продуктов сгорания. [c.83]

    В ряде случаев может быть включен в рабочий цикл турбодетандер (8), предназначенный для использования энергии сжатого масла, выходящего из нижней части промывной колонны. Турбодетандер работает на перепаде давления от 70 до 4,5 МПа. [c.154]

    Монтежю (рис. 111-29) представляет собой горизонтальный или вертикальный резервуар 1, в котором для перекачивания жидкости используется энергия сжатого воздуха или инертного газа. Монтежю работает периодически. [c.150]

    При компрессорном способе эксплуатации используют энергию сжатого воздуха и газа. Б условиях НГДУ затраты на сжатый воздух и газ рассчитывают исходя из объема добычи нефти компрессорным способом, удельных расходов рабочего агента на 1 т нефти (в м ) и цены единицы (1000 м ) рабочего агента. [c.298]

    Поэтому при одинаковом запасе общей энергии сжатый газ обладает большей работоспособностью. [c.42]

    Азот нагревается слабее, чем аргон, так как его молекула двухатомная, и энергия сжатия частично расходуется на возбуждение внутримолекулярных колебаний (в связи с этим теплоемкость азота больше, чем у аргона). Молекула аргона одноатомная, и вся энергия сжатия идет на увеличение кинетической энергии движения молекул газа, т. е. на повышение температуры. [c.41]

    Рассмотрим конструкцию и работу распространенного измерителя и регулятора уровня РУКЦ-365-40 (рис. 18). Принцип действия регулятора основан на изменении силы, выталкивающей цилиндрический буек в зависимости от погружения его в жидкость. Изменение этой силы воспринимается упругой трубкой, являющейся чувствительным элементом регулятора. С помощью энергии сжатого воздуха и пневматического реле прибора изменение уровня жидкости в резервуаре (а стало быть и в поплавковой камере прибора, являющейся сосудом, сообщающимся с резервуаром) преобразовывается на выходе прибора в определенную величину давления воздуха. Полному диапазону изменения уровня от О до 365 мм соответствует изменение давления воздуха на выходе из прибора от О до 1 кгс/см2 при питании прибора воздухом давлением 1,2 кгс/см . [c.58]

    Устройство двухступенчатого пароструйного эжектора показано на рис. 140. Газ из барометрического конденсатора поступает в камеру всасывания 3, подхватывается струей водяного пара, вытекающего из сопла 2 под большим (до 10 ат) давлением. Смесь водяного пара и газов, преобразуя в диффузоре 4 скоростную энергию сжатия, поступает через камеру сжатия в промежуточный конденсатор 5. [c.246]

    Перекрестная технологическая связь (см. рис. 1-8, д) обеспечивает более эффективное использование энергии ХТС. Так, тепло газообразных продуктов химической реакции или отходящих газов можно использовать для предварительного нагрева сырья, поступающего в технологический оператор химического превращения. В ХТС, где технологические процессы протекают при высоких давлениях, для снижения расхода электрической энергии, преобразуемой в механическую, вводят перекрестные связи это позволяет использовать энергию сжатых газов или жидкостей, находящихся под давлением. [c.29]

    Сосуды, работающие под давлением,— потенциальные источники возможных взрывов. В общем случае взрыв — это процесс освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени. В сосудах, ря-ботающих под давлением, имеет место частный случай взрыва— процесс быстрого освобождения энергии, происходящий в результате внезапного разрушения оболочки. При нарушении целостности оболочки вследствие резкого снижения давления происходит мгновенное испарение вещества, содержаихегося в емкости, объем газа или пара быстро возрастает (при испарении воды в 700 раз), потенциальная энергия сжатой среды переходит в течение малого промежутка времени в кинетическую энергию осколков разрушенного сосуда и сжатого газа, а остатки сосуда подвергаются действию реактивной силы. [c.298]

    В связи с этим открывается возможность использовать потенциальную энергию потока растворителя высокого давления для сжатия потока газообразного растворителя из отпарных колонн 12, 13 в струйном компрессоре 7 (см. рис.). Таким образом, в данной схеме полезно используется не только тепловая энергия потока растворителя из разделителя, работающего в безиспарительном режиме, но и его потенциальная энергия сжатия. Потоки растворителя системы низкого и высокого давления после струйного компрессора объединенным потоком при давлении 12-18 ата проходят через холодильник 14, конденсируются и стекают в емкос жидкого растворителя 11.,  [c.315]

    За рубежом разработаны комплекты оборудования коксоудаляющих гидроустановок разного,конструктивного исполнения [30]. В качестве привода гидравлического резака служит специальный вращатель, работающий от энергии сжатого воздуха и совмещающий функции -вертлюга и ротора. Разработан ряд компактных центробежных насосов для коксоудаляющих гидроустановок. Насосы развивают давление от 13,4 до 23,2 МПа, приводом служит паровая турбина с частотой вращения до 8000 мин . Скорость вращения турбины регулируется, что позволяет устанавливать на линии нагнетания насоса оптимальное давление. Параметры гидравлического извлечения зависят от диамет- [c.186]

    Предлагаемый способ энергоснабжения может обеспечить экономию топлива до 8% за счет повышения ндл. производства энергоресур-сов. Составляющие этой экономии использование механической энергии сжатого газа в газовой турбине уменьшение потери тепла с дымовыми газами, так как газ сжигается при меньшем избытке воздуха, чем мазут существенное снижение содержания в отходящих газах 502 позволяет снизить их температуру до 423 К, т.е. более полно использовать их тепло, не опасаясь сернокислотной коррозии. Повышение технико-экономических показателей достигается в основном, в результате замены паровых котлов с паровыми турбинами на газовые и снижения стоимости топлива. [c.135]

    Вторичными энергоресурсами (ВЭР) называется энергетический потенциал конечных, побочных и промежуточных продуктов и отходов химического производства, используемый для энергоснабжения агрегатов и установок. К ВЭР относятся тепловые эффекты экзотермических реакций, теплосодержание отходящих продуктов процесса, а также потенциальная энергия сжатых газов и жидкостей. Наибольшими ВЭР (главным образом, в форме тепла) располагают предприятия химической, нефтеперерабатывающей и нефтехимической промышленности, металлургии, промышленности строительных материгшов, газовой промышленности, тяжелого машиностроения и некоторых других отраслей народного хозяйства. [c.60]

    В 1928 году отечественная азотнокислотная промышленность полностью переходит на синтетический аммиак. В 1931 году вводятся в строй три агрегата по производству разбавленной азотной кислоты под высоким давлением фирмы Дюпон мощностью 12 ООО т/год каждый в г. Черноречье. В период 1932—35 гг. строятся заводы в гг. Горловка и Березняки. В последующие годы уже по отечественным проектам осуществляется строительство заводов по производству азотной кислоты под высоким давлением в гг. Кемерово и Чирчик с агрегатами мощностью 20—22 тысячи тонн в год, с утилизацией энергии сжатых газов. Аналогичное производство организуется в 1938 году на Днепродзержинском азотно-туковом заводе, где впервые была использована комбинированная схема. В1940 году на этом заводе было произведено 138 тыс. т азотной кислоты. К 1941 году в стране разбавленная азотная кислота производилась на 8 предприятиях и концентрированная кислота — на 6 заводах. [c.211]

    Задача непосредственной передачи энергии решена в дизель-компрессоре со свободными поршнями, который действует следующим образом. Энергия газа, расширяющегося в цилиндре дизеля, сообщает движение двум поршневым группам, синхронно движущимся в противоположные стороны, и перемещает их к внешним мертвым точкам (рис. 1У.27). В начале этого хода противодавление газа в цилиндрах компрессора еще невелико, поэтому лишь небольшая доля сил, действующих на поршни дизеля, затрачивается на преодоление давления и сил механического трения. Избыток движущих сил со стороны дизеля над силами сопротивления со стороны компрессора расходуется на увеличение скорости движения поршней, в результате чего избыточная энергия трансформируется в кинетическую энергию поршневых масс. По мере сжатия газа в цилиндрах компрессора противодействие со стороны компрессора возрастает. При некотором положении поршней силы противодействия компрессора становятся равными, а затем превышают уменьшающиеся по ходу поршней движущие силы дизеля. Поршни получают обратное ускорение и передают компрессору запасенную ими энергию, которая расходуется на дальнейшее сжатие газа. Возврат поршней к внутренним мертвым точкам происходит за счет энергии сжатого газа, оставшегося в намеренно увеличенных мертвых пространствах цилиндров компрессора. Таким обра.зом, в машинах, действующих по описанному принципу, свободные поршни выполняют аналогично маховику роль аккумулятора энергии. [c.145]

    Эффективность компрессоров нельзя оценивать обычным энергетическим к. п. д., представляющим собой отношение энергии, приобретаемой газом в машине, к затрачиваемой энергии. При такой оценке эффективности наименьшим к. п. д. обладали бы машины с интенсивным водяным охлаждением, так как значительная часть энергии сжатых в этих машинах газов отводится в виде тепла с охлаждающей водой. Однако, как известно, заданное повышение давления газа достигается с наименьшей затратой энергии именно в машинах с интенсивным водяным охлаждением. Поэтсму для оценки эффективности компрессорных машин используют относительный термодинамический к. п. д., основанный на сравнении данной компрессорной машины с наиболее экономичной машиной того же класса. [c.156]

    Расширени-е газа в детандерах. Когда расширение газа в адиабатных условиях протекает при постоянной энтропии (например, линия 2—3 на рис. 2.1), энергия сжатого газа преобразуется во внешнюю работу Ац. Работа газа в закрытой А или открытой Ло системах при расширении без потерь на трение определяется равенствами  [c.58]


Смотреть страницы где упоминается термин Энергия сжатия: [c.132]    [c.22]    [c.202]    [c.244]    [c.54]    [c.227]    [c.229]    [c.238]    [c.220]    [c.22]    [c.66]   
Смотреть главы в:

Валентность -> Энергия сжатия


Процессы и аппараты химической технологии Часть 1 (1995) -- [ c.194 , c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Компрессоры Значение энергии сжатого воздуха для горной промышленности и краткая история развития компрессоростроения в СССР

Работа сжатия газа. Число ступеней, окружные скорости, размеры рабочих колес и число оборотов. Устройства для преобразования энергии. Устойчивость работы центробежных компрессоров. Регулирование Автоматическая защита и управление

Расход энергии на сжатие газа

Расход энергии на сжатие газа в поршневых компрессорах

Расход энергии на сжатие газов

Рекуперация энергии сжатых газо

Сжатие расход энергии на сжатие

Степень сжатия газа в турбогазодувках и турбокомпрессорах Расход энергии

Термодинамические уравнения энергии и работы сжатия

Чириков К.Ю., Белоусенко В.А. Подпрограмма Расширение использования сжиженного и сжатого природного газа в качестве моторного топлива ФЦП Топливо и энергия, решение проблемы применения природного газа на транспорте

Энергия активации изотермического сжатия

Энергия затрачиваемая на сжатие газа

сжатие, расход энергии



© 2025 chem21.info Реклама на сайте