Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горение детонационное

Рис. 34. Схема горения в нестабильной, но стационарной детонационной волне с двумя поперечными волнами. Заштрихованы области воспламенения с малыми значениями периода индукции. Рис. 34. Схема горения в нестабильной, но стационарной <a href="/info/144896">детонационной волне</a> с двумя <a href="/info/392402">поперечными волнами</a>. Заштрихованы <a href="/info/77536">области воспламенения</a> с малыми значениями периода индукции.

    Для того чтобы проанализировать структуру детонационной волны, следует рассмотреть три области несжатые газы, сжатые, но не прореагировавшие газы и полностью сгоревшие газы позади реакционной зоны. Главное различие между первоначальными зонами горения и зонами позади ударного фронта заключается в том, что в последних поддерживается относительно высокая температура и плотность сжатых газов (см. рис. XIV.6 и XIV. ). Следовательно, изучение свойств ударных волн представляет интерес ради выяснения их возможного влияния на химические реакции. [c.406]

    Сжатие и нагрев несгоревших газов ударной волной привадит к воспламенению. В этом случае во взрывной зоне в свою очередь выделяется большое количество тепла, которого почти достаточно для того, чтобы поддержать стационарную ударную волну. Если допустить, что между концом ударного фронта и началом взрывной волны имеется небольшая зона, где не идет никакой реакции, то газы в этой области будут более горячими, чем несжатые газы, и более плотными в результате большого давления. Следовательно, их локальная поверхностная скорость относительно ударного фронта меньше, чем скорость несжатых газов перед фронтом. Последующая химическая реакция, хотя и нагревает газы, по они сохраняют более высокую плотность, а следовательно, и более низкую скорость по сравнению с несгоревшими газами. Таким образом, относительно фронта детонации продукты горения удаляются с объемной скоростью, меньшей, чем скорость несгоревших газов. Это противоположно положению для обычной волны горения. Профиль одномерной детонационной волны схематично изображен на рис. XIV. . [c.405]

    Детонационные свойства — важная характеристика бензинов. В цилиндр двигателя внутреннего сгорания поступает смесь паров бензина с воздухом, которая сжимается поршнем и зажигается от запальной свечи (искры). Образующиеся при горении газы двигают поршень. Чем больше степень сжатия смеси в цилиндре, тем выше КПД двигателя. Степень сжатия ограничивается характером горения смесн в цилиндре. При нормальном горении скорость распространения пламени равна 10—15 м/с, однако при некоторых степенях сжатия наступает детонация, при которой пламя распространяется со скоростью 1500—2500 м/с. [c.56]

    Таким образом, одна цепь как бы разветвляется на три, откуда и происходит термин "разветвление". Примером такого механизма разветвления цепей являются, кроме горения водорода, реакции с участием перекисей углеводородов, например, детонационное горение автобензинов. [c.28]

    В поршневых двигателях с электрическим зажиганием отложения нагара на стенках камеры сгорания приводят к перегреву днища поршней, возникновению термических напряжений, вызывающих образование трещин, в нередких случаях обнаруживается прогорание днищ поршней. По причине уменьшения объема камеры сгорания увеличивается степень сжатия двигателя, а недостаточный отвод тепла через слой нагара охлаждающей жидкостью создают условия для возникновения процесса неуправляемого горения рабочей смеси — детонации, Пониженны отвод тепла от деталей камеры сгорания, покрытых слоем нагара, повышает требования устойчивости бензина и топливного газа детонационному сгоранию. За счет значительного нагрева частичек нагара, находящегося на стенках камеры сгорания и днища поршня, может возникнуть калильное зажигание рабочей смеси. [c.38]


    Б стационарной детонационной волне ударный фронт сопровождается зоной химической реакции (см. рис. XIV.7). Волна горения характеризуется уменьшением давления и увеличением температуры вдоль фронта пламени. Поскольку в стационарном состоянии фронт пламени должен следовать за ударным фронтом на определенном расстоянии, модель движущейся поверхности не является вполне пригодной для описания стационарной детонации. [c.409]

    Для ацетилена известно так называемое нестационарное горение, при котором часть газа сгорает, а остальное количество сжимается перед фронтом пламени и детонирует уже в сжатом состоянии. Давление, развивающееся при таком разложении, может быть больше в 500—600 раз давления в отраженной детонационной волне. [c.20]

    Расширение газов при горении смеси приводит к образованию ударной волны, распространяющейся перед фронтом пламени. Сжатие газа и его нагревание в ударной волне тем сильнее, чем больше скорость движения расширяющихся газов, которая в свою очередь определяется скоростью горения. При быстром сгорании нагревание смеси в ударной волне может стать настолько значительным, что произойдет ее воспламенение перед фронтом пламени. В этом случае создается такой режим горения, при котором послойный процесс поджигания осуществляется не путем теплопроводности, а под действием импульса давления, т. е. путем детонации. Прн детонационном горении образуется комплекс ударной волны и следующей за ней зоны сжатой и нагретой реагирующей смеси — так называемая детонационная волна. [c.23]

    При горении чистого ацетилена скорость видимого распространения пламени меняется в зависимости от размеров и форм труб (или сосудов) и составляет 0,03—0,9 м/с при давлении 100—200 кПа и 0,03—0,015 м/с при давлении 200—700 кПа. Скорость распространения пламени при детонационном разложе- [c.20]

    Горение одного и того же топлива может протекать нормально или с детонацией в зависимости от конструкции, режима и условий работы двигателя. Форсирование современных автомобильных двигателей но степеням сжатия, мощностным и экономическим показателям вызывает необходимость использования топлив с повышенной детонационной стойкостью. [c.205]

    Первоначально в теориях стационарного распространения пламени детонационная волна рассматривалась в виде плоской волны. Фотографические исследования показали, что зона горения в детонационной волне не является плоской. В силу различных возмущений она теряет устойчивость и изгибается, появляются изломы. Соответственно нарушается устойчивость фронта ударной волны. Взаимодействие возмущений, возникающих в детонационной волне, приводит к неравномерному распределению температуры, образованию очагов очень высокой температуры, появлению пульсаций (пульсирующая детонация). [c.142]

    В результате первой серии опытов было обнаружено, что от перечисленных выше источников инициирования детонационная волна возникает только в пленках масла индустриальное 12. Минимальная толщина пленки, ири которой возможно возникновение детонации, изменяется в пределах 30—10 мкм в зависимости от начального давления кислорода и мощности источника зажигания. При толщине пленки 8—7 мкм и давлении 1,6 Мн м (16/сГ/сж ) происходит интенсивное горение без перехода в детонацию. При уменьшении толщины пленки этого масла интенсивного горения не наблюдается и мембрана остается целой. [c.76]

    Поскольку получающаяся из общих законов сохранения формула дл5 скорости ударной волны содержит только величины, характеризующие начальное и конечное состояние газа, формула, выражающая скорость детонационной волны, должна быть аналогична этой формуле. Различие обеи. формул состоит лишь в том, что в ударной волне конечное состояние газа определяется величинами риг , отвечающими входящей в уравнение (47.1) температуре Т. В детонационной же волне конечное состояние газа, являющееся состоянием продуктов горения, определяется величипами и иг. отвечающими некоторой точке па детонационной адиабате. Таким образом, скорость [c.241]

    Последующее развитие теории детонации было направлено на описание явления с учетом различных проявлений возмущений, возникающих во фронте детонационной волны. Теоретически рассматривались также некоторые свойства детонационной волны, в частности концентрационные пределы ее распространения. На основании анализа взаимосвязи между детонацией и обусловливающей ее химической реакцией горения Я. В. Зельдович пришел к выводу, что в детонационной волне вследствие большой скорости ее распространения изменение состояния газа происходит на длине свободного пробега молекулы (величина порядка см). В этих условиях теплопроводность и диффузия активных центров не могут принимать участия в механизме распространения детонационной волны. Способность смеси к распространению детонации определяется скоростью химических реакций, обусловливающих ее самовоспламенение во фронте детонационной волны. [c.142]

    В США была установлена произвольная величина необходимой чистоты поверхности кислородного оборудования, равная 43 мг мР-. Возможность распространения горения с детонационной скоростью в трубе со сжатым воздухом, на стенках которой имеется слой масла, была подтверждена в 1952 г. [29]. [c.74]

    Движение пламени по газовой смеси, называемое распространением пламени, бывает двух типов детонационная волна и волна горения. [c.32]


    Таким образом, возникающая при детонации ударная волна сопровождается волной горения обе волны, в совокупности образующие детонационную волну, распространяются в газе с некоторой скоростью (скорость детонации), которая значительно превосходит нормальную скорость пламени и обычно составляет 2—5 км сек. [c.241]

    При наличии химической реакции, идущей в волне горения, сопровождающей ударную волну, внутренняя энергия газа, кроме энергии сжатия, включает также химическую энергию, выделяющуюся в результате реакции. Обозначив энергию, выделяющуюся при превращении 1 г вещества, через Ж, в этом случае вместо уравнений (47.1) будем иметь так называемую детонационную адиабату т [c.241]

    Давление в детонационной волне в несколько раз выше давления адиабатического сгорания в жесткой бомбе. При встрече с препятствием — стенкой сосуда давление в детонационной волне возрастает. В определенных условиях давление в отраженной детонационной волне может в несколько сот раз превосходить начальное (до сгорания). Поэтому детонационное горение, вызывающее сильные разрушения, представляет собой большую опасность при образовании горючих газовых систем. [c.133]

    Горение газов гомогенное, оно может протекать как в диффузионной, так и в кинетической области в последнем случае при определенных условиях возможно взрывное и детонационное горение. [c.181]

    Детонационное горение вызывает наиболее сильные разрушения производственного оборудования — трубопроводов, аппаратов и др. Скорость детонационной волны и давление в ней не зависят от скорости реакции в пламени, а определяются тепловым эффектом реакции и теплоемкостями продуктов сгорания. [c.186]

    Адиабатическое воспламенение возможно, например, при работе компрессоров. Поэтому очень важен отвод тепла, образующегося при сжатии газов. Адиабатическое воспламенение — одна из причин возникновения наиболее опасного детонационного горения. [c.204]

    Движение пламени по газовой смеси называется распространением пламени. При этом газовая смесь делится на две части — сгоревший газ, через который пламя уже прошло, и иесгоревший газ, который вскоре войдет в область пламени. Граница между этими двумя частями горящей газовой смеси называется фронтом пламени. Распространение пламени бывает двух типов детонационная волна и волна горения. Детонационная волна является одним из видов ударной волны, распространение которой сопровождается тепловыделением благодаря химическим реакциям во фронте пламени. При этом имеется разница давлений перед и за фронтом волны (фронтом пламени) скорость распространения детонационной волны превышает скорость звука. Волна горения характеризуется тем, что пламя распространяется посредством теплопередачи и диффузии активных молекул от фронта пламени, последовательно преобразовывая несгоревший газ в продукты сгорания. Скорость распространения волны горения значительно ниже скорости звука, а разностью величин давления перед и за фронтом волны можно пренебречь. В данной книге уделим основное внимание рассмотрению волны горения при наличии горячего пламени, называя это просто распространением пламени. [c.13]

    Детонационное горение. Детонационное горение возникает во взрывоопасной среде при прохождении по ней достаточно сильно ударной волны (или волны ударного сжатия). Например, если в сосуде с горючей газовбздушной смесью взорвать точечный заряд взрывчатого вещества, то по газовой смеси от точки расположения заряда начнет распространяться ударная волна. В ударной волне происходит внезапное (скачкообразное) повышение параметров состояния газа — давления, те.мперату-ры, плотности. Повышение температуры газа при сжатии в ударной волне значительно больше, че.м при аналогичном сравнительно медленном адиабатическо.м сжатии.. Абсолютная температура газа, сжатого ударной волной, пропорциональна давлению ударной волны. Следовательно, если ударная волна достаточно сильная, то температура газа под действием ударного сжатия может повыситься до температуры са.мовоспламенения. Так как смесь реакционноспособна, произойдет химическая реакция. Выделившееся тепло пойдет частично на энергетическое развитие и усиление ударной волны, поэтому она будет перемещаться по смеси, не ослабевая. Этот комплекс, представляющий собой ударную волну и зону химической реакции, называется детонационной волной, а само явление — детонацией. Так как химическая реакция при детонации протекает по тому же уравнению, что при самовоспламенении, определяюще.м процесс горения, то детонацию можно считать детонационным горением. [c.132]

    Являясь экзотермическим соединением, ацетилен в опеределен-ных условиях способен к взрывному разложению в отсутствие кислорода или других окислителей. При этом выделяется энергия (8,7 МДж/кг), которой достаточно, чтобы разогреть продукты реакции до 2800 °С. Ацетилен способен к самопроизвольному разложению при горении, взрыве, детонации и каскадном разложении. Конечное давление газов зависит от характера разложения. При взрыве скорость распространения пламени достигает нескольких метров в секунду, а конечное давление, являясь функцией развиваемой температуры, возрастает по сравнению с начальным в 8—12 раз. Давление детонационной волны до ее отражения от стенки (а также от торца, изгиба и т. д.) может увеличиться в 30 раз, а в отражаемой волне в 50-—100 раз. [c.20]

    Общая картина разложения смеси. представляется следующим образом. Возгорание смеси началось со стороны факельного ствола и на определецном участке происходило горение. Об этом свидетельствовали сажевые покрытия на внутренней поверхности трубы. Процесс горения в трубе мог проходить только при наличии этиленовоздушной смеси, содержащей 3,1—32,0% (об.) этилена. Горение газа перешло в детонационный процесс, вызвавший первые разрушения труб. Переход горения в детонацию мог произойти при 5,5—11,5% (об,) этилена. [c.205]

    Пркчина лп зозпикновепия последующих детонационных процессов разложения могло служить наличие участков с оптимальным для детонации составом газов, встреча с отраженной ударно11 волной, повышение давления (что в значительной степени способствовало переходу горения в детонацию) и изменение проходного сечения трубопровода, [c.206]

    Детонация может возникнуть не только при инициировании взрывом, но и при воспламенении искрой или другим тепловым источником. Другими словами, обычное горение может переходить в детонационное. Так, возникновение детонации газов в трубах можно объяснить следующим образом. При нормальном горении фронт пламени, имеющий сферическую или плоскую форму, передвигается в газе с постоянной для данных условий ско )остью. При этом передача тепла из зоны горения в зону свежего газа происходит сравнительно медленно (диффузией и теп.юпроводностью). [c.133]

    При возбуждении ударной волны в химически реагирующем горючем газе под влиянием адиабатического сжатия смеси наряду с ударной волной возникает волна горения. Совокупность этих волн представляет собой детонационную волну. В детонационной волне потери на трение и теплоотдачу при ее движении по трубе компенсируются энергией, выделяющейся в волне горения. Благодаря этому при распространении по трубе детонационной волны становится возможным стационарный режим, когда скорость детонации (О) остается постоянной. Условие существования стационарного режима определяется правилом Чемпена — Жуге, согласно которому стабильность детонационной волны достигается, если скорость потока сжатого газа за фронтом детонационной волны равна или выше скорости звука в этом газе. Правило Чемпена — Жуге позволяет найти на адиабате Гюгоньо точку с такими значениями Рг и Уг, которые обеспечивают стабильность детонационной волны и позволяют вычислить скорость детонации В  [c.141]

    Таким образом, существование концентрационных пределов распространения пламени должно быть следствием уменьшения скорости химической реакции горения вблизи предельного состава смеси. По Я. Б. Зельдовичу, скорость детонации (Л) при составе смеси, близком к предельному, связана со временем реакции (т) и потерями (а) при распространении детонационной волны вследствие гидравлического сопротивления трубы, турбулентного теплообмена и пр. следующим соотношением [c.142]

    Ранее была показана взаимосвязь между интенсивностью излучения пламени и скоростью ее распространения. "Аналогичная взаимосвязь существует и в случае детонационного распространения пламени [21]. Так, было установлено, что фотографически регистрируемая длительность свечения за фронтом детонационной волны для смесей СН4+О2, СН4 + 2О2, 2N2 + O2, 2N2 + + O2 + N2 и 2N2 + 2O2 изменяется антибатно скорости детонации. По-видимому, детонационное распространение пламени также можно представить в виде АХП, при котором горение происходит вследствие самовоспламенения смеси в детонационной волне, а роль обратной связи играет излучение пламени. [c.143]

    Как указывалось выше, свечение возникающего пламени значительно усиливается в период детонации. Уитроу и Рассвей-леру удалось показать спектрографическими методами [118, 124], что полосы спектра связей С—С и С—Н при детонации имеют значительно меньшую интенсивность и что у спектра несгоревших газов в детонационной зоне непосредственно перед взрывом большее поглощение, чем у спектра тех же самых газов в тот же момент, но при бездетонационном горении. Кроме того, поглощение при детонации усиливается, если топливо-воздушная смесь нагрета это наводит на мысль, что вещества большой поглощающей силы образуются в нагретом сырье, когда оно сжимается поршнем и когда к нему приближается фронт пламени. Добавка к бензину антидетонатора в количествах, достаточных для подавления взрыва, ослабляет полосы поглощения несгоревших газов и восстанавливает интенсивность линий С—С и С—Н в сгорающих газах. Очевидно, что перед автовоспламенением, которое вызывает детонацию, появляются соединения (неидентифициро-ванные) с высокой поглощающей способностью. [c.411]

    Несколько иная теория детонации предложена Кингом (King [183]) предполагается, что детонационное горение происходит в отсутствие пламени на поверхности маленьких частичек углерода, полученных пиролизом углеводородов топлива или смазочного масла, или в результате внезапного охлаждения пламени богатых смесей. Было показано, что введение в газообразное моторное топливо графитовой пыли вызывает детонацию. Некоторые доказательства в пользу этой версии былн получены наблюдениями Миллера [184], который показал с помощью высокоскоростной фотографии пламени в двигателях, что при начале детонации [c.412]

    С увеличением диаметров труб минимальное давление, при котором еще возможен детонационный распад ацетилена, уменьшается (см. рис. 28 и 29, стр. 69, 70). По данным Г. Сарджента , рост давления, развивающегося при взрыве ацетилена, в наиболее опасном режиме горения—при каскадном разложении (когда часть газа сгорает, а остальной газ сжимается перед фронтом пламени и детонирует в сжатом состоянии) — [c.64]

    Чрезвычайно показательно, что кинетическая модель реакции и описанное поведение системы в области атмосферных давлений и температур 1000 К в реальных условиях в значительной мере определяет гидродинамический механизм воспламенения и горения газа в детонационных волнах. Многочисленные экспериментальные наблюдения и теоретический анализ течения газа в зоне химической реакции, инициируемой нагревом газа за ударным фронтом плоской детонационной волны, показывают, что одномерная и стационарная схема течения в такой зоне неустойчива. На практике реализуется локально нестационарная и многофронтовая модель детонационного горения 1119, 1521, в которой термическое состояние ударно нагретого газа варьируется в достаточно широких пределах — от 900 до 3000 К вместо 1800 К, характерных для стационарной детонационной волны Чепмена — Жуге. Это изменение температуры обычно представляется в виде непрерывного распределения вдоль искривленного [c.305]

    Таким образом, предельные кинетические явления становятся определяющим фактором в осуществлении в реальных условиях многофронтовой физико-химической модели детонационного горения — явления, достоверность и универсальность которого сейчас уже не вызывает никаких сомнений. Интересно отметить, что и в условиях воспламенения за фронтом детонационных волн определенную роль может играть также изменение условий в газе перед включением процесса. Было замечено, что, как [c.306]

    Турбулизация горящей смеси, т. е. неупорядоченное движение отдельных объемов газа, вызывающая значительное увеличение поверхности пламени, может приводить к ускорению горетгя, ограничиваемому лишь газодинамическими особенностями горения при переходе к детонационному режиму (см. ниже). [c.131]

    Высоту насадки при обычном кинетическом (дефлаграционном) горении принимают в пределах 80—120 мм, а при детонационном горении высота насадки должна быть бoльuJe. [c.418]

    Ц110НН0Й стадии горения. Образующиеся в этом периоде нестойкие кислородные соединения перекнсного характера при сгорании рабочей смеси взрываются идем самым, переводят нормальное течение процесса горения на детонационную волну, в свою очередь приводящую к дефектам в работе двигателя. 1 ак оказалось, измеряемая на моторе детонация не только топлив, но и индивидуальных углеводородов, находится в некоторой связи с окисляемостью этих углеводородов. [c.339]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]

    При определенных условиях нормальное, т. е. дефлаграци-онное и взрывное, горение может перейти в детонационное, при котором скорость распространения пламени превышает скорость распространения звука в данной среде и может достигать 1000—5000 м/с. Чаще всего детонация возникает при горении газов в трубопроводах большой длины при определенном начальном давлении и определенных концентрациях горючего вещества в воздухе или кислороде, например 6,5—15% ацетилена в смеси с воздухом, 27—35% водорода в смеси с кислородом. [c.185]


Смотреть страницы где упоминается термин Горение детонационное: [c.132]    [c.356]    [c.144]    [c.497]    [c.513]    [c.76]    [c.243]    [c.294]    [c.186]   
Теория горения (1971) -- [ c.50 ]

Охрана труда в химической промышленности (0) -- [ c.159 ]

Охрана труда, техника безопасности и пожарная профилактика на предприятиях химической промышленности (1976) -- [ c.315 , c.324 ]

Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.147 ]




ПОИСК







© 2025 chem21.info Реклама на сайте