Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термическое окисление ПАН-волокна условия окисления

    Критерии оценки качества окисленного ПАН, предназначенного для дальнейшей обработки, в литературе не приводятся. При окислении окраска ПАН-волокна становится вначале желтой, затем коричневой и, наконец, черной. Отмечается [65], что только из черного ПАН можно получить углеродное волокно высокого качества. Так, например, из нити толщиной 20 текс, полученной из штапельного волокна и окисленной до черного цвета, при последующей карбонизации получилось углеродное волокно с прочностью 60 гс/иить, а из нити, окисленной до темно-коричневого цвета, — с прочностью 20 гс/нить. Подобная органолептическая оценка степени окисления несовершенна, так как для материала черного цвета в зависимости от условий термического окисления свойства мо- [c.169]


    Углеродные волокна, используемые в композициях со смолами для изготовления армированных пластиков, характеризуются высокой разрывной прочностью и жесткостью. Их получают из специальных марок полиакрилонитрильных волокон путем трехступенчатой термической обработки по строго определенному режиму во все более жестких условиях. На первой стадии полиакрилонитрильное волокно нагревают на воздухе при температуре 200—300°С, одновременно вытягивая его для поддержания высокой степени ориентации макромолекул. Окисленное волокно подвергают карбонизации в атмосфере инертного газа с повышением температуры до 1500 °С и в заключение проводят графитацию волокна при температуре до 2500—3000 °С. Природа протекающих при этом химических реакций сложна и пока еще плохо изучена. На первой стадии в полимер вводится кислород и волокно становится устойчивым к термической деструкции. Для этого промежуточного материала было предложено несколько структур, большинство которых основано на представлении об образовании многоядерной системы лестничного типа с непрерывным увеличением числа сопряженных двойных связей (и, следовательно, углублением окраски) в ходе окисления. В состав этой системы входят звенья 85 —87. [c.352]

    В данном разделе излагаются результаты изучения термической и термоокислительной деструкции ПАН и основные условия окисления ПАН-волокна при получении из него углеродного волокна. [c.142]

    Процесс получения МР-волокна из ПВХ включает следующие стадии приготовление пека, формование волокна, окисление волокна, карбонизацию и графитацию [1]. Ранее было установлено [2—4], что при термической обработке ПВХ (температура 390— 415 °С) в среде азота образуется плавкий пек при термической обработке ПВХ на воздухе в условиях более низкой температуры (мепее 300 °С) получается неплавкий пек. [c.227]

    Термостабилизация. Волокна из ароматических полиамидов, находясь в условиях воздействия температурных полей, постепенно изменяют свои механические характеристики, причем процессы деструкции, снижающие механические свойства волокон, протекают в температурной области, весьма далекой от температурных областей плавления или разложения исходных полимеров. Для ароматических полиамидов наиболее вероятными процессами, протекающими под действием тепла и кислорода воздуха, могут быть реакции гидролиза, окисления, структурирования и гомолитического распада. Замечено [26, с. 155], что тип реакции влияет на изменение свойств изделия. Так, например, разрыв макромолекулярной цепи приводит к потере прочности и эластических свойств волокна, тогда как сшивка макромолекулярных цепей в меньшей мере сказывается на изменении прочности. Обнаружено также, что чем выше температура начала термического разложения ароматических ПА, тем выше термостойкость волокна на их основе, однако прямая корреляция между этими величинами отсутствует [95]. [c.107]


    Температурно-временные режимы карбонизации. Температурно-временные режимы карбонизации имеют исключительно важное значение, так как во многом они определяют качество углеродного волокна. Как указывалось выше, при карбонизации протекают сложные химические и структурные превращения ПАН и образуется определенная структурная форма углерода. Графит по сравнению с другими переходными формами углерода термодинамически наиболее устойчив эта форма углерода соответствует минимальному значению свободной энергии или максимальному ее изменению (уменьшению) в процессе термического преобразования углерода. Однако такому переходу препятствует ряд моментов и прежде всего труднопреодолимые кинетические барьеры. Реальные углеродные волокна представляют собой неравновесные термодинамически неустойчивые системы, однако вследствие высоких кинетических барьеров эти системы необычайно стабильны и могут существовать неопределенно длительное время. В процессе получения углеродного волокна углерод из неравновесного состояния стремится перейти в равновесное состояние. Чем медленнее протекают процессы превращения углерода, тем более благоприятные условия создаются для образования совершенной его структуры (увеличение степени ароматизации, рост и ориентация кристаллов, снижение дефектности структуры и др.), определяющей свойства волокна. Это справедливо при условии, если не происходит окисления углерода следами кислорода, который может присутствовать при проведении реакции. Однако слишком медленные процессы невыгодны по экономическим соображениям из-за снижения производительности оборудования. В подобных случаях выбираются разумные временные режимы, обеспечивающие получение продукта высокого качества при сохранении определенного уровня производительности оборудования. [c.189]

    В последнее время исследования процесса термической деструкции целлюлозы были проведены Роговиным, Каргиным и Финкельштейн Для исключения возможности окисления и гидролиза целлюлоза (хлопковое и вискозное волокно) нагревалась в высоком вакууме (10 б мм) при непрерывном удалении летучих продуктов, выделяющихся в процессе термической деструкции целлюлозы. Для полного удаления гигроскопической влаги из целлюлозы волокна предварительно прогревались в высоком вакууме при 120° в течение 2 час. (в этих условиях деструкции целлюлозы не происходит).  [c.223]

    Так как термическая обработка на воздухе и в азоте сопровождается различными реакциями, сво11ства волокна изменяются по-разному. В присутствии кислорода воздуха наблюдаются более глубокие превращения полимера с частичным распадом связей основной цепп и интенсивным образованием связей между фрагментами структуры. В такой системе создаются благоприятные условия для релаксации напряжений, возникающих при окислении, поэтому волокно не обрывается. При термической обработке в азоте образуются более жесткие структуры, при этом под влиянием возникающих напряжений, релаксация которых затруднена, происходит обрыв волокна. [c.213]


Смотреть страницы где упоминается термин Термическое окисление ПАН-волокна условия окисления: [c.68]   
Термо-жаростойкие и негорючие волокна (1978) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Волокна, окисление



© 2025 chem21.info Реклама на сайте