Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитрид титанила

    При обычной температуре по отношению к азоту титан вполне устойчив, однако при высоки температурах легко вступает в реакцию с азотом —он является одним из немногих металлов, способных гореть в атмосфере азота. Особенно бурно взаимодействует с азотом расплавленный титан. В результате взаимодействия титана с азотом образуются нитрид и ряд тверды.х растворов. Фосфор при 450 С и выше взаимодействует с титаном с образованием фосфидов. [c.263]


    Газообразный аммиак при обычной температуре с титаном не реагирует, а нри высокой температуре образует с ним нитрид и гидрид  [c.265]

    В последние годы применяют новые высокопроизводительные процессы металлизации с применением низкотемпературной плазмы. В плазменном потоке можно наносить различные тугоплавкие металлы вольфрам, молибден, титан, ванадий и др., а также окислы, нитриды, карбиды, бориды, которые другими способами нанести нельзя. В промышленном масштабе получил [c.78]

    Чистый титан п настоящее время получают восстановлением хлорида титана (IV) магнием в атмосфере аргона. Наличие загрязнений (следов оксидов, кислорода, водорода, азота, паров воды) приводит к загрязнению титана оксидами, нитридами, гидридами. Поэтому в обычных лабораторных условиях получит], чистый титан практически нельзя. [c.191]

    При обычной температуре по отношению к азоту титан, цирконий и гафний вполне устойчивы, однако при высоких температурах проявляют исключительную способность реагировать с ним. Достаточно заметить, что титан и цирконий способны гореть в атмосфере азота. Особенно бурно взаимодействуют с азотом расплавленные титан, цирконий и гафний. В результате взаимодействия металлов с азотом образуются нитриды [c.80]

    Как уже было указано, титан, цирконий и гафний (особенно в расплавленном виде) способны интенсивно реагировать с азотом при высоких температурах с образованием рядов твердых растворов, а также нитридов, из которых преимущественную роль играют мононитриды МеЫ. Нитриды титана, циркония и гафния — кристаллические очень твердые и тугоплавкие металлоподобные вещества. Температуры их плавления соответственно равны 2930, 2950, 3310° С. [c.85]

    Химические свойства. При обычной температуре титан довольно устойчив при нагревании же легко соединяется со многими элементами, в том числе и со сравнительно инертным азотом. Так, в струе хлора он загорается при 350° С. В кислороде аморфный титан загорается при 610° С, сплавленный — при 800° С. При 800° С он образует с азотом нитрид титана TiN при более высокой температуре TiN разлагается на металлический титан и азот. С углеродом при нагревании титан образует карбид состава Ti , причем избыточный углерод выделяется в виде графита. Еще при более высокой температуре титан соединяется с кремнием и бором, образуя чрезвычайно твердые вещества — силициды и бориды титана. Такое большое сродство титана ко многим элементам весьма сильно усложняет и затрудняет переработку титановых руд. [c.293]

    Соединения с азотом. С азотом титан соединяется непосредственно. При нагревании до 800° С загорается и образует нитрид состава TiN цвета бронзы. При более высокой температуре нитрид разлагается. Этой реакцией пользуются для получения аммиака. [c.298]


    Фазы внедрения образуются и при взаимодействии титана, циркония и гафния с углеродом и азотом. Растворимость этих элементов в титане и его аналогах значительно меньше, чем водорода, хотя они также образуют твердые растворы внедрения. Поскольку атомные радиусы углерода и азота больше, чем водорода, предельный состав фаз внедрения в этом случае отвечает формуле ЭС и ЭЫ, т. е. заполняются только октаэдрические пустоты в ГЦК решетке. Эти фазы относятся к наиболее тугоплавким. Ниже приводим температуры плавления карбидов и нитридов в сопоставлении с температурами плавления металлов  [c.243]

    Железо, кобальт и никель поглощают водород, но определенных соединений с ними не дают. Нитриды их неустойчивы, ио, образуясь на поверхности стальных изделий при насыщении их азотом в атмосфере аммиака, делают эти изделия более коррозионно устойчивыми и более твердыми. Стали, легированные металлами, имеющими большое сродство к азоту (титан, ванадий, хром, марганец), лучше азотируются.  [c.346]

    Расплавленная или парообразная сера энергично реагирует с расплавленными титаном и цирконием, в результате чего получаются сульфиды SSj. Титан, цирконий и гафний устойчивы по отношению к азоту при обычной температуре, но при нагревании горят в нем с образованием нитридов  [c.410]

    Титан входит в состав легких и прочных сплавов для авиационной и ракетной техники. Оксид (IV) титана применяют в радиоэлектронике, производстве красителей и пластических масс. Нитрид титана TiN используют для шлифовки драгоценных камней вместо порошкообразного алмаза. [c.411]

    По типу внедрения бор образует твердые растворы с титаном, цирконием и гафнием. Бориды состава Э2В и ЭВ являю ч металлоподобными фазами внедрения, твердыми и тугоплавкими, хотя и уси лают в этом отношении карбидам и нитридам. [c.396]

    Титан мононитрид см. Титан нитрид [c.470]

    Легирование титаном как способ повышения стойкости к МКК коррозионно-стойких сталей применяется давно [79]. Но до настоящего времени нет единого мнения о том, как определять необходимое для предотвращения МКК количество титана. В карбиде титана Т1С по массе титана в четыре раза больше, чем углерода. Казалось бы, что количество титана должно в четыре раза превышать количество углерода, которое необходимо связать для понижения его концентрации до безопасного уровня. Принимая эту безопасную концентрацию углерода, равной 0,02 %, необходимое для предотвращения МКК, количество титана обычно определяют по формуле % Т1 4 (% С — 0,02). Выше было показано, что 0,02 % С не безопасный предел для возникновения МКК. И на практике это соотношение не гарантировало создание иммунитета против МКК. Она наблюдалась в сталях типа 18-8 при Т1/С = 7,5 и даже 10—12 [40]. Правильнее определять количество титана по формуле % Л 5 (% С — 0,009). Но при таком определении необходимо учитывать, что далеко не весь титан расходуется на образование карбидов. Часть его образует прочные окислы и нитриды титана, в особенности в сталях легированных азотом. [c.53]

    Гидриды, нитриды, карбиды. С водородом и элементами УА-1 А- и П1А-подгрупп периодической системы титан образует соединения интерметаллидного характера — гидриды, нитриды, фосфиды, карбиды, силиды, бориды и т. д. и ограниченные твердые рас1Вор1л. Эти соединения довольно многочисленны, но несмотря на простоту мало изучены. Многие из них представляют практический интерес. [c.269]

    Как указано выше, титан способен интенсивно реагировать с азотом при высоких температурах с образованием ряда тверлых растворов, а также нитридов, из которых преимущественную роль играет нитрид T N. Нитрид титана — кристаллическое, очень твердое (по твердости приближается к алмазу) металлоподобное вещество с температурой плавления 2930°С. Этот нитрид проводит электрический ток, причем электрическая проводимость его уменьшается с повышением температуры, что указывает па его металлический характер. Химически нитрид титана д0В0Л1зН0 инертен. С элементарным титаном образует фазы переменного состава, в основном состоящие из TiзN (субнитрид) и ограниченных твердых растворов. [c.270]

    Ато.м азота имеет на внешнем слое трн неспаренных электрона (15 25 2р ) поэтому атомы азота образуют двухатомную мо-, 1екулу N2 с тремя ковалентными связями. По методу МО ЛКАО кратность связи в молекуле равна трем N0 [/С/С(а,) (о ) (л,) (л,,) (о,.), что объясняет ее химическую инертность. При комнатной температуре азот не реагирует нн с металла.мн, ин с неметаллами, за исключением лития, который медленно соединяется с азотом с образованием нитрида. При [ агреваннн азот реагирует со многими металлами, например с магнием, титаном, алюминием, а также с неметаллами водородом, кремнием и бором, < )бра (уя нитриды. [c.160]

    Велика роль азота в металлургических процессах. Обычно его присутствие ухудшает свойства металлов, поэтому стремятся предотвратить взаимодействие металла с азотом или удалить из металла содержаи ийся в нем азот. В частности, при юлучении высококачественных сталей азот удаляют добавкой титана (в виде сплава с железом-ферротнтана). Титан образует очень прочный нитрид, который переходит в шлак. Вместе с тем проводят азотирование поверхности стали, образовавшиеся нитриды железа значительно увеличивают твердость поверхностного слоя изделий. [c.411]

    Необходимо учитывать их дальнейшее прпмснспие и в первую очередь вероятность взаимоденствия паров воды и других газов с реагирующим веществом. Например, при получении нитридов действием азота или аммиака на металлы (рис. 20), обладающие большим сродством к кислороду (магний, кальций, титан и др.), даже следы паров воды (или кислорода) будут переводить эти металлы в оксиды. Поэтому газы нужно тщательно осушить, например, оксидом фосфора (V). [c.293]


    Большие потенции таятся в плазмохимической технологии производства мелкодисперсных порошков — основного сырья для порошковой металлургии, в восстановлении металлов, синтезе оксидов, карбидов, силицидов, нитридов, карбонитридов, боридов таких металлов, как титан, цирконий, ванадий, ниобий, молибден [13]. Все эти соединения являются сверхтвердыми и жаропрочными материалами, столь необходимыми для современного машиностроения. Уже разработана технология синтеза монооксидов (ЭО) элементов, обычно встречаюпщхся лишь в составе диоксидов ЭОг), например монооксида кремния (510), обладающего ценнейшими электрофизическими свойствами. И несмотря на то, что плазмохимические процессы в таких синтезах характеризуются высокими энергетическими параметрами (7ж5000—6000 К тепловой поток до 5—7 МВт иа 1 см ), процессы эти отличаются не только исключительно высокими скоростями, но и относительно низкими удельными энергетическими затратами — всего лишь около 1—2 кВт-ч/кг Таким образом, химия высоких энергий направлена на экономию энергии. [c.235]

    По типу внедрения образуют твердые растворы с титаном, цирконием и гафнием также кислород и бор. Так, кислород в a-Ti растворяется вплоть до 34 ат. долей, % при 925 °С, до 40 ат. долей, % в a-Zr и до 20 ат. долей, % в a-Hf, по типичных фаз внедрения обычно ие образует в силу высокой электроотрицательности. Однако существующие низшие оксиды титана Ti O и TiaO с металлидными свойствами можно формально рассматривать как фазы внедрения с частично заполненными октаэдрическими пустотами. Бориды состава ЭаВ и ЭВ являются металлоподобиыми фазами внедрения, твердыми и тугоплавкими, хотя и уступают в этом отношении карбидам и нитридам. Известны, кроме того, фазы состава ЭВг для всех элементов подгруппы титана. Однако их принадлежность к фазам внедрения сомнительна, поскольку атомный радиус бора не позволяет его атомам размещаться в небольших тетраэдрических пустотах. [c.244]

    С кислородом воздуха титан и цирконий энергично образуют диоксиды титан при 1200°, цирконий —при 650° С. В атмосфере азота оба горят, образуя нитриды типа 3N. Это очень твердые вещества переменного состава, с металлической проводимостью, температура плавления порядка 3000° С. Нитрид циркония — один из самых прочных в термодинамическом отношении нитридов. Состав его ZrNi изменяется от д = О до л = 0,42, энтальпия образования соответственно изменяется от —90,7 до —56,1 ккал ф.вес, а свободная энергия образования Д бивариантной системе — в зависимости от температуры и давления азота [49, стр. 251 )  [c.330]

    Т1С с различными связками (Со, N1, Сг и др.) употребляется как жаропрочный материал для изготовления деталей в реактивной технике, лопаток газовых турбин, работающих при 1000° С н 17 000 об1мин, тор.мозных дисков и пр. Карбиды титана и циркония используют для изготовления абразивных материалов, высокотемпературных тиглей, электродов дуговых ламп, как промежуточные продукты для получения тетрахлоридов, нз которых затем получают титан и цирконий. Гидриды их мри иагреванни в вакууме до 800—1150° С в течение 2— 3 ч полностью разлагаются, получаются активные тонко зернистые порошки металлов, которые отлично спекаются при 1000—1250° С под давлением до 12 гп см и затем хорошо куются. Нитриды титана и циркония используются для изготовления тиглей, для правки шлифовальных кругов, для создания антикоррозионных гюкрытий, в качестве огнеупоров и стойких против окисления материалов. [c.333]

    При обЕлчных температурах молекулярный азот химически инертен (соединяется только с литием) вследствие большой прочности его двухатомных молекул N2, имеющих тройную связь. Но при повышении температуры активность его растет, он взаимодействует с некоторыми металлами — магнием, кальцием, титаном, образуя нитриды при очень высоких температурах непосредственно соединяется с водородом и кислородом. [c.342]

    На воздухе при комнатной температуре эти металлы устойчивы, что обусловлено наличием на их поверхности плотной защитной пленки ЭОг. При повышенных температурах активность данных металлов заметно возрастает. В кислороде аморфный титан загорается при 610°С, образуя Т102. Цирконий в виде порошка уже при 180—285 °С воспламеняется на воздухе, образуя 2г02. При температурах выше 900 °С он взаимодействует с азотом, образуя нитрид ZгN. При нагревании титан реагирует с серой, иодом и углеродом с образованием соот- ветственно ИЗг, ПЬ и Т1С. [c.460]

    Знаинтельные количества титана расходуют в производстве сплавов. Такие сплавы даже при 400—500 С отличаются высокой прочностью. Сравнительная легкость (плотность его 4490 кг/м ), а также высокая коррозионная стойкость титана позволяют использовать его в авиационной и ракетной технике, для сооружения вагонов, судов, в автомобилестроении. Титан пригоден для изготовления узлов и деталей химической аппаратуры. В порошкообразном состоянии титан легко поглощает при нагревании азот и кислород. Поэтому его применяют в радиоэлектронике при изготовлении ламп и других вакуумных устройств. За годы десятой пятилетки производство титана возросло в 1,4 раза. Практическое значение имеют некоторые соединения титана. Так, нитрид Т1М и карбид Т[С титана служат для изготовления тугоплавкого сплава (1 пл — 4216 С), Оксид титина " ) используют в производстве титановых белил. [c.463]

    Характерной особенностью элементов подгруппы титана является образование твердых растворов и фаз внедрения с легкими неметаллами (Н, В, С, N1 О). Это обстоятельство накладывает заметный отпечаток на металлохимию этих элементов. Титан и его аналоги обладают способностью сильно поглощать водород. Фазам внедрения отвечают номинальные составы ЭН и ЭН2(Т1Н2, 2гН и 2гН2, НШ и НШг)- Для этих фаз характерна ГЦК-решетка. Фазы внедрения образуются и при взаимодействии титана, циркония и гафния с тлеродом и азотом. Растворимость этих элементов в титане и его аналогах значительно меньше, чем водорода, хотя они также образуют твердые растворы внедрения. Поскольку атомные радиусы углерода и азота больше, чем водорода, предельный состав фаз внедрения в этом случае отвечает формуле ЭС и ЭК, т.е. заполняются только октаэдрические пустоты в ГЦК-решетке. Эти фазы относятся к наиболее тугоплавким. Ниже приведены температуры плавления карбидов и нитридов металлов подгруппы титана  [c.396]

    Цирконий вводят в белый чугун при получении ковкого чугуна (ля того, чтобы при обработке его в жидком состоянии получить )Олее высокие механические свойства за счет образования первич 1ЫХ чешуек графита в процессе затвердевания. При содержании в )елом чугуне до 0,09% цирконий аналогично титану связан прей лущественно в нитридах. Обработка жидкого чугуна циркониевым юдификатором усиливает влияние таких легирующих элементов, <ак хром, молибден и ванадий. [c.63]

    Как уже отмечалось выше, присутствие азота в сталях, стабилизированных титаном или ниобием, может ухудшать их стойкость против МКК. Связывая титан и ниобий в малорастворимые нитриды, азот тем самым выводит эти элементы из взаимодействия с углеродом, что требует введения избыточного количества титана или ниобия. Количество свяванного в нитриды титана определяется соотношением Ti/N = 3,3, а ниобия — Nb/N 6,64. [c.55]

    Коррозия в атмосфере азота. При нагревании в воздушной атмосфере большинство металлов и сплавов сильно окисляются, тогда как взаимодействие их с азотом протекает слабо. Исключение составляют сплавы, содержащие нитридообразующие элементы хром, алюминий, титан, бериллий и др. Известно, что низколегированные хромом и алюминием стали при температуре 500 С образуют нитриды, обладающие высокой твердостью. Процесс образования нитридов на металлической поверхности называется азотированием . [c.83]


Смотреть страницы где упоминается термин Нитрид титанила: [c.651]    [c.655]    [c.446]    [c.157]    [c.161]    [c.412]    [c.143]    [c.273]    [c.649]    [c.4]    [c.471]    [c.60]    [c.102]   
Основы общей химии Том 2 (1967) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Нитриды

Титан нитрид



© 2024 chem21.info Реклама на сайте