Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бора принцип квантования

    В теории Бора — Зоммерфельда принцип квантования был введен произвольно, в ней все еще использовались законы классической механики. [c.24]

    В теорию Бора принцип квантования был введен произвольно. В ней в основном использовались законы классической механики. Открытие волновых свойств электрона, фотоэффект, опыты с абсолютно черным телом привели к созданию нового раздела физики- квантовой механики. Большую роль в ее создании сыграли Э. Шредингер и В. Гейзенберг. [c.26]


    Еще раньше появились первые работы по квантованию энергии — сначала применительно к излучению абсолютно черного тела (Планк, 1901 г.), а после объяснения законов фотоэлектрического эффекта (Эйнштейн, 1905 г.)—применительно ко всем системам атомных размеров. Важнейшим шагом в этом направлении явились работы Бора (1913 г.), применившего принцип квантования к проблеме строения атома. В качестве наглядной модели атома в этой теории используют обычно солнечную систему, где в центре находится ядро (Солнце), а вокруг, по орбитам движутся электроны (планеты). [c.161]

    Вскоре после возвращения в Данию Бор сумел найти недостающее звено в теории атома водорода. Он дополнил ее принципом квантования. Гипотеза Бора заключалась в том, что орбитальный момент электрона рф представляет собой квантованную величину  [c.15]

    Перед тем как вычислять поле излучения, связанное с потенциалами предыдущего раздела, мы изучим их связь с проблемой излучения в квантовой теории. Наиболее плодотворной идеей в переходе от ранней атомной теории к квантовой механике явился принцип соответствия Бора. Из принципов квантования, развитых для условно периодических динамических систем, следовало, что асимптотически для переходов между состояниями с большими квантовыми числами спектроскопические частоты Бора превращаются в реальные частоты механического движения. В классической механике энергия Е такой системы может быть выражена через систему постоянных движения ..., [c.91]

    Следующий и, как показали дальнейшие события, пожалуй, наиболее важный шаг сделал Бор, применивший принцип квантования к проблеме строения атома. До этого времени основное внимание уделяли в большей мере излучению, а не веществу. Замечательные эксперименты Резерфорда по рассеянию частиц атомами впервые показали, что атом состоит из положительно заряженного ядра большой плотности, окруженного более размытым отрицательно заряженным электронным облаком . В рамках классической физики, для того чтобы такая система могла существовать хоть одно мгновение, электроны должны находиться в движении. Однако даже при таком условии они будут непрерывно излучать энергию, замедляться и в конце концов неизбежно упадут на ядро. Чтобы объяснить, почему это не происходит в действительности. Бор выдвинул гипотезу о существовании стационарных состояний, в которых кулоновское притяжение ядра и электрона точно уравновешивается центробежной силой отталкивания электроны могут оставаться в них неограниченное время, не теряя энергии. Его гипотезу, а также ряд аналогичных предположений пришлось ввести для объяснения результатов экспериментальных исследований атомарных систем, [c.21]

    В доквантово-механический период общий метод исследования задач теории атомных спектров состоял в следующем вычисления делались на основе некоторой модели при помощи классической механики, а затем делалась попытка изменить формулы так, чтобы эти изменения были незначительными для больших квантовых чисел, однако характер их давал бы возможность достигнуть соответствия f с экспериментом при малых квантовых числах. Следует удивляться тому коли-честву результатов современной теории линейчатых спектров, которое было получено этим путем. Существенные достижения здесь принадлежат Паули, Гейзенбергу, Гунду и Ресселю. Была построена векторная модель сложных атомов, в которой основную роль играло квантование моментов количества. > движения отдельных электронных орбит и их векторной суммы. К этому же V периоду относится открытие Паули правила запрета, согласно которому два электрона в атоме не могут обладать одной и той же совокупностью квантовых чисел. После появления квантовой механики принцип Паули естественным образом вошел в теорию. Однако этот принцип сыграл еще большую роль как эмпирическое правило, в особенности благодаря работам Гунда, посвященным строению сложных спектров, и развитию теории периодической системы элементов, начатую Бором. [c.17]


    В конце XIX и в начале XX столетия были сделаны важные экспериментальные открытия, которые в значительной мере определили пути развития современной химии и физики. Одно из этих открытий состояло в том, что энергия в атомных масштабах не может меняться непрерывно. Энергия микросистемы принимает только определенные значения, которые являются кратными некоторых неделимых далее частиц энергии, называемых квантами. Наивысшим пунктом развития идей квантования в период до создания волновой механики явилась теория Н. Бора (1913), который впервые применил указанные принципы к проблеме строения простейшего атома — атома водорода. Прежде основное внимание уделялось исследованию излучения, а не строения вещества. [c.161]

    Первым шагом на пути создания квантовой механики явились условия квантования и дискретности энергетических состояний электрона в атоме, введенные Н. Бором. Следующим этапом стали принцип неопределенности В. Гейзенберга (1924) и уравнение Луи де Бройля (1924). [c.79]

    С помощью методов оптической спектроскопии, в том числе спектроскопии в УФ, видимой и ИК-области, можно получить важные сведения о строении молекул. В настоящее время источником ценной информации для химиков стала еще одна область электромагнитных колебаний — микроволны, или волны радиочастотного диапазона, которые ранее представляли интерес лишь для инже-неров-электроников и связистов. Несмотря на то что приборы микроволновой спектроскопии не имеют почти ничего общего с приборами, применяемыми в оптической спектроскопии, в основе обеих групп методов лежат одни и те же принципы. Любые спектры возникают вследствие квантованных переходов в соответствии с условием частот Бора. [c.236]

    Естественно, что это достижение стимулировало другие работы, и в течение последующих нескольких лет были достигнуты крупные успехи в интерпретации тонких деталей спектра водорода, обусловленных релятивистскими эффектами (Зоммерфельд) и влиянием электрического поля на спектр водорода (Эпштейн, Шварцшильд). Кроме того, появилось много существенных исследований по обобщению модели и квантового принципа на другие, более сложные атомные и молекулярные структуры. Эти полукачественные исследования были весьма, успешны и дали мощный импульс к экспериментальному изучению и анализу атомных спектров. Теория использовала для изучения модели классическую механику. Требовалось определить так называемые многократно-периодические движения, из которых разрешенные движения определялись правилами квантования, представлявшими собой развитие постулатов Бора для момента количества движения для круговых орбит водорода. Мы не будем входить в детали работ этого направления читатель может обратиться к книге Зоммерфельда ), Строение атома и спектральные линии . [c.15]

    СКИХ уровней, энергии которых могут быть определены при детальном анализе атомных спектров. Отсюда следует, что в волновой модели атома должны быть квантованные энергетические уровни, точно так же как в атомных моделях, построенных по экспериментальным данным. В волновой механике квантованное энергетическое состояние называют собственным значением. Итак, для каждой собственной функции существует соответствующее собственное значение. Интерпретация этого термина довольно сложна. Она основана на аналогии со светом (имеющим также волновую природу), интенсивность которого в данной точке пропорциональна квадрату амплитуды световой волны в этой точке. Аналогично интенсивность электронной волны пропорциональна г з . Однако эта идея сама по себе дает довольно мало информации, и поэтому приходится прибегать к одному из двух следующих способов ее интерпретации. Согласно первому из них, предполагается, что электрон движется вокруг ядра по пути, который не обязательно имеет сферическую симметрию. В этом случае 1)3 представляет собой величину, характеризующую зависящее от времени распределение отрицательного заряда вокруг ядра. Эту динамическую модель электрона довольно трудно себе представить, и она может быть заменена на эквивалентную статическую модель электрона в виде облака отрицательного заряда, распределенного (не обязательно сферически) вокруг ядра, причем плотность заряда в любой элементарной ячейке пространства dxdydz) будет пропорциональна йх йу йг). Эквивалентность этих двух моделей становится очевидной, если представить себе, что ноло-/кения движущегося электрона будут отмечаться точками в пространстве в течение значительного промежутка времени. Плотность точек на этом графике будет выглядеть как облако статического заряда. Согласно второй интерпретации 113 (использование которой более оправдано именно в этой интерпретации, поскольку в ней не принимается, что электрон размазан в пространстве), электрон рассматривается как частица и вероятность его наблюдения в любой точке в канадый момент пропорциональна величине я)) для этой точки. Обе интерпретации полезны. В последней отражен принцип неопределенности Гейзенберга, согласно которому невозможно точно описать и местонахождение электрона в атоме и его энергию (или момент) в одно и то же время. Так, если точно известна энергия уровня, на котором находится электрон, то нельзя проследить его точную орбиту (подобную предложенной Бором). Вместо этого для данного энергетического уровня существует атомная орбиталь несколько размытой формы, определяемой значением вероятности для всех ее точек. Такая орбиталь, обычно обозначаемая как АО, принимает определенную форму, лишь если пренебречь теми ее областями, где вероятность нахождения электрона очень мала. С другой стороны, интерпретация по типу модели облака заряда является несравненно более полезной при наглядном изобрал<ении химической связи. [c.33]



Физическая химия (1987) -- [ c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Квантование



© 2025 chem21.info Реклама на сайте