Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон энергетические состояния

    I. ДИАГРАММА ЭЛЕКТРОННЫХ ЭНЕРГЕТИЧЕСКИХ СОСТОЯНИИ (ДИАГРАММА ЯБЛОНСКОГО) [c.362]

    Известно много факторов, которые видоизменяют электронные энергетические состояния в магнитном поле. Мы рассмотрим эти факторы постепенно при обсуждении спектров ЭПР сложных систем. [c.9]

    Вторая особенность применения метода МО к комплексным соединениям состоит в том, что при наличии неспаренных электронов энергетическое состояние частицы (терм — см. гл. V) зачастую производится от нескольких электронных конфигураций, что требует представления Ф в виде линейной комбинации определителей. [c.76]


    Набор атомных волновых функций и коэффициентов с соответствующими знаками определяют МО, на которой, согласно принципу Паули, размещается пара электронов. Энергетическое состояние орбитали можно определить из уравнения [c.33]

    Приведенное здесь качественное описание электронных энергетических состояний в твердом теле основано на предположении об образовании более или менее прочной связи это предположение лежит [c.33]

    Согласно этой теории, предполагается, что тепловые колебания, как и электронные энергетические состояния, также квантуются. [c.85]

    Характеристика элемента. В отличие от меди у серебра электронный слой заполняется без всяких осложнений, так как у расположенного перед ним палладия имеется уже завершенный внешний 18-электронный слой без электронов на 55-подуровне. В атоме серебра 47-й электрон просто начинает заполнение бх-орбитали и тем самым повторяется электронное энергетическое состояние внешнего слоя рубидия. Различие энергетических характеристик 55 и 4 ° у серебра гораздо больше, чем орбиталей 3 ° и 4 атома меди, поэтому серебро в своих соединениях имеет степень окисления преимущественно -Ы. Более глубокое окисление может быть достигнуто действием таких сильных окислителей как озон, персульфат аммония или фтор  [c.293]

    На рис. 16 показаны электронные энергетические состояния в полупроводниках донорного, акцепторного или частично компенсированного типов. Нас сейчас интересует только область энергий между потолком валентной [c.224]

    Электронные энергетические состояния находятся на столь значительном расстоянии друг от друга, что при обычных температурах практически все молекулы оказываются в своем основном [c.321]

    Если предположить, что структура энергетических зон нитридов ниобия и циркония подобна, то разница концентрации валентных электронов в них будет сказываться в основном в различной степени заполнения энергетической зоны. Предполагаемая теорией БКШ [3] связь между и плотностью электронных энергетических состояний у поверхности Ферми дает основание предположить, что различие характера концентрационной зависимости Гк в областях гомогенности ZrN и NbN отражает особенности хода кривой плотности состояний у поверхности Ферми при заполнении энергетической зоны, непрерывно возрастающей от ZrN до NbN стехиометрического состава и имеющей максимум при электронной концентрации между [c.160]

    Эта характеристика дает лишь общее представление о типах спектров и отражаемых ими явлений, поскольку здесь имеются и исключения. В частности, существуют и такие переходы между электронными энергетическими состояниями, которые попадают в диапазон сверхвысоких частот. В некоторых случаях в диапазоне сверхвысоких частот могут непосредственно наблюдаться ядерные эффекты, [c.292]


    На почве представлений зональной теории полупроводников было сделано несколько попыток построить теорию термоэлектронной эмиссии из оксидного катода. Эти попытки учитывают энергию перехода электронов с заполненной полосы (или с местного уровня) в полосу проводимости и работу выхода из оксида в вакуум или газ для электронов, энергетическое состояние которых соответствует полосе проводимости. Зависимость эмиссионного тока от температуры, полученная таким образом (формула Тягу-нова), имеет вид  [c.47]

    Эквивалентные электроны Энергетические состояния Эквивалентные электроны Энергетические состояния [c.181]

    Мы видели, что единственный электрон описывается квантовым числом I, а в случае набора п электронов энергетические состояния характеризуются соответствующим квантовым числом L. Таким образом, в то время как I связано с орбитальным моментом количества движения одного электрона, L связано с орбитальным моментом количества движения, возникающим благодаря взаимодействию моментов набора электронов. На практике рассматривают электроны по два и векторным образом складывают их орбитальные моменты. В зависимости от относительной ориентации /-векторов могут получиться разные результаты. Если два электрона имеют значения I, равные h и k, то L может принимать значения от /i + /2 до /i— 2 , т. е. h + h, h + k—К h + k—2,. .. /i—/г - Для ясности рассмотрим взаимодействие двух /7-электронов. [c.314]

    В сумму (6-38) включены все поступательные, колебательные, вращательные и электронные энергетические состояния. В уравнении (6-37) выделен член, содержащий разность энергий Е . [c.495]

    В отличие от атомов молекулы нельзя считать очень маленькими жесткими материальными точками, и это серьезно усложняет интерпретацию молекулярных спектров. Молекулы вращаются, а их ядра колеблются относительно положения равновесия. Энергия каждого из этих движений квантуется так же, как и электронные энергетические состояния. К изменениям энергии, происходящим при изменении электронной конфигурации, добавляются теперь меньшие изменения энергии, соответствующие изменениям колебательного квантового числа, и еще меньшие добавки энергии, обусловленные изменением заселенности вращательных уровней. Изменения колебательной и вращательной энергии или их комбинация, конечно. [c.66]

    Аналогично электронам ведут себя в электрическом поле и другие заряженные частицы (ионы). Однако вследствие большой разницы в массе электрона и ионов, доля энергии, передаваемой при соударении с нейтральной молекулой, будет различной. Электрон при соударении теряет всего около 0.1 /о своей энергии, ионы же могут потерять около 50%. Вследствие большой потери скорости в результате соударения температура ионов всегда будет значительно ниже температуры электронов. Энергетическое состояние электронов в газе принято характеризовать температурой электронного газа, понимая под этим термином среднюю кинетическую энергию электронов, выраженную в электрон-вольтах (эл.-в). В табл. 1 [ " ] даны соотношения между средней энергией электронов, выраженной в электрон-вольтах, и температурой электронного газа Тг при максвелловском распределении [c.135]

    В каждой из главных квантовых групп, при любом главном квантовом числе п, энергетическое состояние электронов, соответствующее / = О, называется -состоянием, а электроны в этом состоянии называются -электронами энергетическое состояние, соответствующее 1=1, называется р-состоянием и электроны у [c.17]

    Заполнение электронами энергетических состояний происходит в соответствии с принципом наименьшего действия и принципом Паули. [c.98]

    Молекула в определенном электронном состоянии должна находиться на одном из колебательных уровней этого электронного состояния и на одном из вращательных подуровней этого колебательного уровня. В отличие от того, что можно было бы ожидать, если сравнить молекулу с макротелом, вращательная или колебательная энергия молекулы может изменяться только при потере или получении дискретного кванта энергии. Поскольку поглощение энергии молекулой может включать одновременные изменения в колебательных, вращательных и электронных энергетических состояниях, то получается очень сложный спектр. [c.556]

    Отсюда, установив электронно-энергетическое состояние базисного соединения, на основе которого развивается процесс концентрационного политипообразования, оказьшается возможным провести прямое квантовохимическое моделирование вероятных составов политипов, которые могут возникать, например, при гетеровалентном замещении атомов решетки исходной фазы элементами иного сорта. Критерием отбора элементных составов возможных политипов будет служить соответствие их ЭЭС и условий химического связьшания таковым для базисной фазы как наиболее устойчивой системы в образующемся политипном ряду. [c.107]

    Естественно, что потенциальные возможности подхода [36, 37] не ограничиваются задачей определения элементного состава политипов. Современные вычислительные методы квантовой теории, как это мы попытались продемонстрировать в настоящей монографии, оказьшаются эффективными при решении проблем кристаллохимии, позволяют проводить корректные расчеты многих иных физикохимических свойств твердофазных систем. Отсюда, получаемая информация о фундаментальных электронно-энергетических состояниях политипов определяет перспективы описания явления концентрационного политипизма во взаимосвязи электронное строение — состав — структура — свойства. [c.109]


    Сходная методология применялась к изучению большого набора разнообразных дефектов (в том числе — различных примесных центров) в кристаллическом и стеклообразном 8102 [Ю9—130]. Например, в [117] рассмотрен набор парамагнитных (=810)з81, (=810)281(011), (=81—Ю)281(Н), и диамагнитных центров (=810)з81(Н), (=810)281(0Н)(Н)) в системе ЗЮггН и интерпретированы их ЭПР-характеристики в [129] изучены локальные электронные состояния дефектов на поверхности 8102 и оценены энергии атомарной адсорбции Си, Рс1 и Сз. В последние годы предпринимаются попьггки описания параметров процессов диффузии примесей в 8102 с позиций расчета их электронно-энергетических состояний например, диффузия бора в присутствии в объеме 8102 дополнительных примесей водорода и азота исследована в [103,120—122]. [c.165]

    Аналогичное явление перераспределения электронов между соседними (и близкими) по энергии подуровнями имеет место у атомов многих других элементов (отмеченных особо в Приложении 2). Именно при таком распределении электронов энергетическое состояние их (и атома в целом) наиболее выгодно в соответствии с принципом минимума энергии. Считается, что под влиянием других электронов и для уменьшения общей энергии атома совершается перескок электрона с 45-подуровня на Зй-подуровеиь атомов Сг и Си, так как при этом возникают полузаполненный (34 ) и полностью заполненный (Зй ) подуровни, обладающие минимальной энергией и максимальной устойчивостью. [c.99]

    В неравновесно реагирующей системе можно говорить о вращательной температуре , колебательной температуре и т. д., которые различны и совпадают лишь, если система находится в равновесном состоянии. Такое неравновесное распределение энергии может иметь место (при псевдобольцмановском распределении), если скорость передачи энергии для той или иной степени свободы значительно больше скорости передачи энергии между различными степенями свободы. Поэтому необходимо в химически реагирующих системах исследовать отдельно распределение энергии по вращательным, колебательным и электронным энергетическим состояниям. [c.7]

    Символы при атомах Hg называют термами. Ими обозначают электронное энергетическое состояние атома. Сейчас для нас будет представлять интерес только левый верхний индекс, равный числу неспаренных электронов плюс единица. Так, соответствует двум неспаренным электронам, So указывает, что неспаренных электронов нет.) Вслед за возбуждением происходит обратный процесс — флуоресценция, если энергия возбуждения атома ртути не удаляется при взаимодействи с какой-либо другой частицей, например [c.236]

    Современная электронная теория металлов и полупроводников исходит из того, что нрп соединении отдельных атомов в кристаллическую решётку энергетические уровни электронов смещаются под действием электрических полей соседних атомов так, что возможные уровни энергии всей совокупности электронов в атомах, составляющих кристаллическую решётку твёрдого тола, превращаются из дискретных далеко отстояпцгх друг от друга атомных энергетических уровней в целые энергетические ПОЛОСЫ)) с густо расиоложенными в них возможными, т. е. удовлетворяющими квантовым законам, уровнями. В металлах энергетические полосы перекрывают друг друга, и поэтому, несмотря на дискретность отдельных фовней, распределение по энергиям может быть представлено законом распределения Ферми с точностью, достаточной для решения многих вопросов, в том числе и для построения теории термоэлектронной эмиссии металлов. В случае диэлектриков и полупроводников возможные но квантовым законам полосы энергии не перекрываются, а отделены друг от друга запрещёнными зонами, как это схематически показано на рис. 8 для диэлектриков и на рис. 9 для полупроводников. Так же как и в металлах, при низких температурах заняты все нижние энергетические уровни. Выше полностью занятых энергетических полос лежат другие незаполненные, но возможные полосы энергетических уровней. Переход электронов на уровни этих полос может иметь место за счёт энергии теплового движения атомов кристаллической решётки или за счёт поглощения электронами световых квантов, проникающих внутрь кристалла. Так как в нижних полосах все уровни заняты, то электроны, энергетическое состояние которых соответствует етим полосам, не могут переходить в другое энергетическое состояние, лежащее в пределах той же полосы, а поэтому не могут свободно передвигаться в пространстве под действием внешнего электрического поля. Для осуществления электропроводности электронного характера необходимо наличие электронов в верхней, незаполненной полосе энергетических уровней, называемой полосой проводимости. [c.45]

    Вопрос о перспективах химии высоких давлений был также рассмотрен Уэнторфом на симпозиуме по физике и химии высоких давлений в 1962 г. [6]. Он констатирует, что при давлениях, превышающих мегабар, энергии сжатия станут сопоставимыми с энергиями химических связей. Иными словами, атомы, которые первоначально не были связаны между собой, будут тогда прижаты друг к другу почти столь же плотно, как атомы, которые были химически связаны. Тем самым для первоначально имевшихся валентных электронов появится много новых доступных электронных энергетических состояний. Можно охарактеризовать такое вещество как электронно вырожденное и ожидать, что оно по своей природе будет металлическим. Химия такого вещества, по-видимому, будет в некоторых отношениях походить кз химию металлов. Отдельные молекулы станут уже неразличимыми вместо этого можно ожидать возникновения некоего плотно упакованного атомного супа , который при снятии давления будет расширяться с образованием больших или малых молекул при этом многообразие путей реакции приведет и к многообразию продуктов . [c.404]

    Как известно, отдельный атом может находиться в возбужденном электронном энергетическом состоянии, отличаюп емся от основного (наинизшего) состояния конечной энергией возбуждения. Однако в среде, состоящей из большого числа одинаковых, сильно взаимодействующих между собой атомов или молекул, такое локализованное возбуждение является неустойчивым и как бы перескакивает с одного атома на другой. Для оценки времени переноса возбуждения между двумя соседними атомами можно воспользоваться соотношением неопределенностей. Предположим, что атом в состоянии возбуждения внезапно испытал изменение, связанное с переходом в основное состояние. Очевидно, что в этом новом состоянии соответствующая ему энергия возбуждения равна нулю. Подобное внезапное изменение лишило бы атом всей его энергии возбуждения и гипотетический наблюдатель перехода не знал бы, чему равна его энергия то ли возб, то ли нулю. Неопределенность в значении энергии обратно пропорциональна неопределенности во времени перехода, так что отождествляя с временем переноса возбуждения и ориентировочно принимая возб — 3—5 эв, определяем [c.92]

    Степень поглощения световой энергии не является одинаковой во всем интервале длин волн существуют области максимального поглощения, соответствующие различным электронным энергетическим состояниям молекулы. Интенсивность и контур полос поглощения определяются вероятностью электронных переходов и разностью энергий колебательных уровней соответствующих электронных состояний молекулы. Количество поглощенной энергии зависит также от средней энергии, подводимой к ка кдой молекуле в единицу времени. Следовательно, если интенсивность падающего света поддерживается постоянной на онределениом уропне в течение данного промежутка времени, то могкно наблюдать снектр поглощения. [c.123]


Смотреть страницы где упоминается термин Электрон энергетические состояния: [c.309]    [c.190]    [c.70]    [c.922]    [c.190]    [c.485]    [c.44]    [c.115]    [c.117]    [c.373]    [c.65]   
Теоретическая неорганическая химия (1969) -- [ c.30 , c.96 ]

Теоретическая неорганическая химия (1971) -- [ c.29 , c.92 ]

Теоретическая неорганическая химия (1969) -- [ c.30 , c.96 ]

Теоретическая неорганическая химия (1971) -- [ c.29 , c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Диаграмма электронных энергетических состоянии (диаг рамма Яблонского)

Диаграмма электронных энергетических состояний (диаграмма Яблонского)

Закон распределения электронов по энергетическим состояниям

Классификация элементов на основе энергетического состояния их электронных конфигураций

Методы экспериментального исследования энергетических уровней вращения молекул, колебания ядер и электронного состояния молекул

Состояние энергетическое

Состояния электрона

Состояния электронов в энергетических зонах. Металлы и полуметаллы

Энергетические состояния электронов в нестехиометрических кристаллах

Энергетическое состояние электрона в атоме

Этилен энергетическое состояние ненасыщенных электронов в молекуле



© 2025 chem21.info Реклама на сайте