Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроволновая спектроскопия

Рис. 8.17. Схема микроволнового спектроскопа с двойной модуляцией поля Рис. 8.17. Схема микроволнового спектроскопа с <a href="/info/131605">двойной модуляцией</a> поля

    Молекула азотной кислоты полярна (р. = 2,16). По данным микроволновой спектроскопии (П1 6 доп. 9) она является плоской и имеет строение, показанное на рис. IX-26. Энергия" связи О—N между гидроксилом и нитрогруппой равна 52 ккал моль. Ион NOJ (в кристаллах NaNOa) представляет собой плоский равносторонний треугольник с asoTONf в центре [ (N0) = 1,22 А]. Силовая константа связи k(NO) = 10,4, а сродство к электрону радикала NO3 оценивается в 90 ккал/моль. [c.428]

    Недостатком электронографического метода является несколько меньшая точность определения геометрических параметров многоатомных молекул по сравнению с микроволновой спектроскопией. Это обусловлено в основном тем, что уравнения, используемые в электронографическом методе, требуют независимого нахождения углов и интенсивностей рассеяния, в то время как в микроволновой спектроскопии необходимо измерение лишь положений линий спектра. Однако для простых молекул в рамках обоих методов точность определения структурных параметров сопоставима. [c.128]

    В табл. 13-4 указаны диапазоны электромагнитного излучения, энергия которого выражена в различных единицах, а также названы источники излучения и приемные устройства, применяемые в каждом диапазоне. Квантованный характер молекулярных энергетических уровней используется в современных спектроскопических исследованиях для идентификации молекул и выяснения их молекулярного строения. Например, изучение вращательных переходов методами спектроскопии в дальней ИК-области и микроволновой спектроскопии дает исключительно точные сведения [c.587]

    НЫМИ И весьма неожиданными методами. Напомним, что константа квадрупольного взаимодействия может быть получена методом микроволновой спектроскопии, а в гл. V увидим, что она измеряется и в мессбауэровской спектроскопии. [c.103]

    Методы инфракрасной, КР- и микроволновой спектроскопии представляют собой ценное средство исследования структуры молекул. Прежде всего это касается упомянутых в разд. 5.4 переходов зеемановских уровней. Расстояния между этими магнитными энергетическими уровнями в магнитных полях, создаваемых обычными лабораторными установками, соответствуют микроволновому диапазону для спина электронов, дециметровому и метровому диапазонам для ядерного спина. [c.69]

    Многие экспериментальные значения высоты потенциального барьера были получены С использованием методов микроволновой спектроскопии (изучение спектров поглощения молекул газа в области длин волн около 1 см). Эти значения (13,8 кДж-моль- для НзС—СН Р и 13,3 кДж-моль- для НзС—СНРг) оказались близкими к значениям для этана соответствующие значения для НзС—СН2С1 и НзС—СНзВг несколько выше, причем каждое из них равно 14,9 кДж-моль . Устойчивой формой молекулы во всех этих случаях является шахматная конформация (связи находятся с противоположных сторон оси С—С, как показано на рис. 7.5). Неустойчивая форма, получаемая поворотом метильной группы на 60° вокруг связи С—С, называется заслоненной конформацией. [c.187]


    Спектроскопич. методы определения Д. м. молекул основаны на эффектах расщепления и сдвига спектральных линий в электрич. поле (эффект Штарка). Для линейных молекул и молекул типа симметричного волчка известны точные выражения, связывающие Д. м. со штарковским расщеплением линий вращательных спектров. Этот метод дает наиб, точные значения величины Д. м. (ло 10 Д), причем экспериментально определяется не только величина, но и направление вектора Д. м. Важно, что точность определения Д. м. почти не зависит от его абс. величины. Это позволило получить весьма точные значения очень малых Д м. ряда молекул углеводородов, к-рые нельзя надежно определить др. методами. Так, Д. м. пропана равен 0,085 0,001 Д, пропилена 0,364 + 0,002 Д, пропина 0,780 0,001 Д, толуола 0,375 0,01 Д, азулена 0,796 0,01 Д. Область применения метода микроволновой спектроскопии ограничена, однако, небольшими молекулами, не содержащими атомов тяжелых элементов. Направление вектора Д. м. молекулы м. б. определено экспериментально и по Зеемана эффекту второго порядка. [c.76]

    Простейшие непредельные молекулы ацетальдегида, пропилена, пропионового альдегида, как показано электронографическими методами и микроволновой спектроскопией, предпочтительно находятся в эклиптических конформациях [c.128]

    Микроволновая спектроскопия. В микроволновой области фотоны имеют длины волн от 30 до 0,06 см (V от ЫО до 5-10 1 секг ) и соответственно энергии — от 4 до 2000 дж1моль. В этой области спектра энергия фотона мала, поэтому возникают изменения только во вращательном движении, что дает возможность вычислять моменты инерции молекул. Поглощение энергии происходит при определенных частотах, которые и используются для определения моментов инерции газообразных молекул. [c.67]

    Инфракрасная и микроволновая спектроскопия, спектры комбинационного рассеяния [c.267]

    Излучение в дальней инфракрасной и микроволновой областях, обладающее низкой энергией, вызывает в молекулах чисто вращательные переходы. В отличие от инфракрасной микроволновая спектроскопия позволяет производить измерения частот с высокой точностью. Так, если точность изрешения частот в ИК-области на обычных спектрометрах составляет 1 см , а размещение даже несколько СМ , то в микроволновой области удается получить разрешение до 10 см . Дальняя ИК-область и область микроволновых частот занимают участок от 10 до 10 см . Достаточно широкий спектральный интервал и высокое разрешение делают эту [c.171]

    Для многих молекул однозначно определить структуру по кривой J r) не представляется возможным. Например, если в молекуле имеется несколько близких по величине межъядерных расстояний, которые на кривой /(г) проявляются в виде одного широкого пика сложной формы, или когда в молекуле наряду с тяжелыми атомами присутствуют легкие (водород), которые вследствие малого заряда ядра и, соответственно, малого числа электронов обладают небольшой рассеивающей способностью. Тогда обычно рассматривается несколько моделей структур, при этом в качестве структуры исследуемой молекулы принимается та модель, для которой наблюдается лучшее согласование экспериментальной и теоретической кривых лМ(х). Часто структурную задачу удается решить лишь при анализе электронографических данных совместно с данными других методов (ИК-и КР-спектроскопии, микроволновой спектроскопии). [c.282]

    Структурные параметры молекулы SO2 (ц = 1,63) известны с очень большой точностью d(SO) = 1,4321 А и а = 119,536°. Приведенные числа наглядно показывают возможности использованного для их установления метода микроволновой спектроскопии (III 6 доп. 9). Энергия связи 5 = 0 оценивается в 128 ккал/моль, а ее силовая константа к = 10,0. Ионизационный потенциал молекулы SO2 равен 12,7 в, а для ее сродства к электрону дается значение 64 ккал/моль. [c.328]

    Для экспериментального исследования строения молекул и в различных агрегатных состояниях используют рентгенографию, электронографию, нейтронографию, ИК-спектры, микроволновую спектроскопию, ядерный магнитный резонанс. [c.133]

    К сожалению, эта принятая в молекулярной спектроскопии система обозначений противоположна системе, принятой в атомной спектроскопии. Кроме того, некоторые авторы, работающие в области микроволновой спектроскопии, а также электронной спектроскопии больших молекул, не следуют принятому правилу и записывают первым символом исходное состояние, т. е. нижнее состояние в поглощении и верхнее состояние в испускании. В настоящей книге мы всегда будем придерживаться рекомендации Международной комиссии по спектроскопии. [c.52]

    КОНФИГУРАЦИЯ РАВНОВЕСНАЯ, расположение атомных ядер молекулы (или радикала, иона) в пространстве, соответствующее минимуму ее потенц. энергии. К. р. двухатомной молекулы характеризуется расстоянием между атомными ядрами. Для описания К. р. многоатомных молекул необходимо исппльловат] такие параметры, как длины связей, валентные углы, а также двугранные углы (см. Номенклатура стереохимическая). К. р. молекулы зависит от ее электронного состояния. Так, в оси. состоянии молекула ацетилена имеет линейную конфигурацию, в возбужденном — трансоидную. Параметры молекулы (или ее геометрию) определяют методами рентгеновского структурного анализа, газовой электронографии, микроволновой спектроскопии, нейтронографии и др., а в случае простых молекул также рассчитывают квантовомех. методами. КОНФОРМАЦИИ молекул, различные пространств, формы молекулы, возникающие при изменении относит, ориентации отд. ее частей в результате виутр. вращения атомов или групп атомов вокруг простых ( вя 1еп, изгиба связей и др. При этом стереохим. конфигурация молекулы остается неизменной. Каждой К. соответствует определ. энергия. Так, для молекулы зтана можно представить существование двух максимально ра )личающихся по энергии К.— 1аслоненной (ф-ла la), для к-рой диэдральный угол Ф (см. Номенклатура стереохимическая) имеет значения О, 2, 4, и. заторможенной, или шахматной ([б), с ф = 1, 3, 3. Первой из них соответствует максимум энергии, второй — минимум. Поэтому молекулы этана существуют практически только в заторможенной К. [c.274]


    Структуры низших гомологов органических пероксикислот были определены методом микроволновой спектроскопии и диэлькометрии в газовой фазе [35, 36], а высших — методом РСА в кристаллическом состоянии [37,38]. [c.97]

    Межатомные расстояния (длины связей) в молекулах и кристаллах можно определить методами спектроскопии (включая микроволновую спектроскопию), рентгеноструктурного анализа, методами дифракции электронов и нейтронов, методом ядерного магнитного резонанса. Описание этих методов выходит за рамки данной книги. За последние сорок лет были определены длины связей для многих сотен веществ, и полученные значения оказались весьма полезными при рассмотрении электронных структур молекул и кристаллов. [c.163]

    Д. м. определяют на основе измерений диэлектрич. проницаемости газов и р-ров, а также методами микроволновой спектроскопии и электрич. резонанса в молекулярных пучках. Единица измерения в системе СИ — Кл -м. [c.179]

    Результаты, полученные с помощью микроволновой спектроскопии, дают также возможность найти значения дипольных моментов молекул. Если к исследуемым молекулам приложить электрическое поле, то произойдет расщепление вращательных линий спектра (эффект Штарка). Величина этого расщепления определяется произведением искомого дипольного момента на и 1вестную величину напряженности электрического поля. [c.175]

    Иаученне длинноволнового инфракрасного спектра сопряжено с большими техническими трудностями, но ведется обйчными оптическими методами. Напротив, используемая в области более длинных волн, порядка 1 10 см, р а д и ося е ктр оско-пня (ниаче—микроволновая спектроскопия) основана на совершенно другой Методике определяются частоты радиоволн, избирательно поглощаемых данным веществом. По достигаемой точности структурных определений спектральный метод (особенно радиоспектроскопия) превосходит все остальные, но применим он лишь к сравнительно простым молекулам. Об использований радиоспектроскопии для установления строения молекул имеется обзорная статья,  [c.99]

    Структура простейшего диоксирана исследована методом микроволновой спектроскопии [63]. В трехчленном цикле орбитали НЭП ориентированы друг относительно друга образом, формально соответствующим нулевому торсионному углу в линейных пероксидах. Следовательно, молекула диоксирана дестабилизирована на величину, равную сумме энергии напряжения цикла и высоты цмс-барьера, что обусловливает низкзто термическую стабильность диоксиранов. Оба фактора способствуют удлинению связи 0—0 диоксирана (>1.5 А), см. табл. 2.18. Связь [c.109]

    Наличие устойчивых конфигураций в виде а/ти- и с н-форм косвенно подтверждается результатами ИК- и микроволновой спектроскопии близкого аналога НОООН — трисульфида водорода [93]. Как показывают квантово-химические расчеты на уровне теории МР2/Т2 + Р и 0С15О/Т2 + Р, он/иы-форма Н585Н на I кДж/моль (87 см" ) стабильнее сын-формы. [c.115]

    Возбуждение, которое испытывают атомы и молекулы, зависит от частоты поглощаемого излучения. Еслн спектр снят во всей области длин волн, то обсуждая отдельные области спектра, говорят о рентгеновской, электронной, инфракрасной и микроволновой спектроскопии. Табл. 9 пока швает, в кэкоЛ [c.121]

    Конформации (1) и (2) можно назвать заслоиенныии,/а конформации (3) н (4) скошенными. Методом микроволновой. спектроскопии показано, что наиболее устойчивыми являются ааслЬИённые конформации (]. и (2). Ко.нформация., (,21, (двойная...связь..заслонена водородому [c.77]

    Этот простейший еиол изомеризуется в более стабильный ацетальдегид примерно за 80 минут при 25 °С в отсутствие катализаторов и чрезвычайно быстро в обычной стеклянной посуде, поскольку обычное стекло обладает щелочной реакцией. Для винилового спирта с помощью микроволновой спектроскопии были определены структурные параметры енола, приведенные на схеме. [c.1324]

    Днгалогсикарбены — Fg, ССЬ и СВга — характеризуются синглет-ным основным состоянием с углами ХСХ, равными 105° для дифторкар-бека (данные микроволновой спектроскопии [3]) и 100 10° для дихлор- и днбромкарбеиов (данные ИК-спектроскопии [4]). [c.265]

    Спектрометры высокого разрешения позволяют измерять очень тонкие расщепления B. . молекул и определять молекулярные параметры с высокой точностью. Так, длины связей находят по B. . с точностью до тысячных долей нм, валентные углы-до десятых градуса. Микроволновая спектроскопия наряду с газовой э.гектронографией — осн. метод изучения геометрин молекул. Все шире применяется для этих целей также лазерная КР-спектроскопня и Фурье-спектроскопня. [c.430]

    М в изучают разл. физ. методами, основные из к-рых молекулярных пучков метод, дифракционные методы, в частности газовая электронография, масс-спектрометрия повыш. давления, ЯМР, микроволновая спектроскопия, ЯКР-колебат спектроскопия (инфракрасная и комбииац. рассеяния), вакуумная УФ спектроскопия изучение температурных зависимостей вириальных коэф., коэф. вязкости, диффузии, теплопроводности и др. Важную роль в исследовании М. в. играют расчетные методы квантовой химии. [c.15]

    Р. изучает неск. типов переходов переходы между уровнями энергии, соответствующими вращат. движению молекул с постоянным электрич. моментом (см. Микроволновая спектроскопия), переходы, обусловленные взаимодействием электрич. квадрупольного момента ядра с внутр. электрич. полем в твердых телах (см. Ядерный квадрупо.пчый резонанс) и взаимодействием электронов проводимости с внеш. магн. полем (см. Циклотронный резонанс) переходы, обусловленные взаимодействием магн. моментов электронов или ядер с внеш. магн. полем в газах, жидкостях и твердых телах (см. Электронный парамагнитный резонанс, Ядерный магнитный резонанс). [c.171]

    По диапазону длин волн (или частот) электромагн. излучения выделяют радиоспектроскопию, микроволновую спектроскопию, оптическую С. (см. Инфракрасная спектроскопия. Молекулярная оптическая спектроскопия. Ультрафиолетовая спектроскопия), рентгеновскую спектроскопию и гамма-спектроскопию (см. Мёссбауэровская спектроскопия. Гамма-абсорбционный аиализ). Оптическую С. на практике иногда отождествляют со спектрофотометрией. В каждом разделе С. используются свои приборы для получения, регистрации и измерения спектров. В соответствии с различием конкретных эксперим. методов выделяют спец. разделы С., напр. Фурье-спектроскопия, лазерная спектроскопия. [c.394]

    С.х. базируется на данных таких эксперим. методов, как рентгеновский структурный анализ, нейтронография, электронография, микроволновая спектроскопия и спектроскопия комбинац. рассеяния, ИК спектроскопия, УФ и фотоэлектронная спедстроскопия, резонансные методы (ЯМР, ЭПР, мёссбауэровская спектроскопия, ядерный квадрупольный резонанс), а также типичных физ.-хим. методов-термохимии, адсорбции, катализа и т.п. [c.445]


Смотреть страницы где упоминается термин Микроволновая спектроскопия: [c.276]    [c.450]    [c.24]    [c.66]    [c.441]    [c.62]    [c.355]    [c.482]    [c.482]    [c.139]    [c.79]    [c.88]    [c.405]    [c.690]    [c.536]   
Смотреть главы в:

Физическая химия -> Микроволновая спектроскопия

Основы органической химии -> Микроволновая спектроскопия

Основы органической химии 1 Издание 2 -> Микроволновая спектроскопия

Основы органической химии Часть 1 -> Микроволновая спектроскопия

Физические методы в неорганической химии -> Микроволновая спектроскопия

Секторы ЭПР и строение неорганических радикалов -> Микроволновая спектроскопия

Химия Справочник -> Микроволновая спектроскопия


Физическая химия (1978) -- [ c.473 ]

Прикладная ИК-спектроскопия (1982) -- [ c.219 ]

Органическая химия (1979) -- [ c.37 , c.40 ]

Прикладная ИК-спектроскопия Основы, техника, аналитическое применение (1982) -- [ c.219 ]

Основы органической химии (1968) -- [ c.34 , c.35 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.41 , c.42 ]

Основы органической химии Часть 1 (1968) -- [ c.34 , c.35 ]

Физические методы в неорганической химии (1967) -- [ c.232 ]

Конформационный анализ (1969) -- [ c.171 , c.172 ]

Общая химия (1974) -- [ c.149 , c.165 , c.179 , c.181 , c.272 ]

Строение материи и химическая связь (1974) -- [ c.74 ]

Секторы ЭПР и строение неорганических радикалов (1970) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Измерения масс прецизионные микроволновая спектроскопия

Интенсивность спектральных полос в микроволновой спектроскопии

Колебательные а вращательные спектры. Инфракрасная спектроскопия, спектроскопия комбинационного I рассеяния и микроволновая спектроскопия

Методика эксперимента в микроволновой вращательной спектроскопии

Микроволновая спектроскопия барьеры

Микроволновая спектроскопия дипольных моментов

Микроволновая спектроскопия определение валентных углов

Микроволновая спектроскопия энергия вращения

Микроволновый шум

Отнесение линий в микроволновой спектроскопии

Отщепление линий в микроволновой спектроскопии

Спектроскопия комбинационного рассеяния и микроволновая спектроскопия

Спектроскопия микроволновая газов



© 2025 chem21.info Реклама на сайте