Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота химическая стойкость различных материалов

    Сущность процесса ионного обмена. В середине XIX в. было открыто свойство почв обменивать в эквивалентных количествах входящие в их состав ионы на дрз гие ионы, содержащиеся в почвенном растворе. Способность к ионному обмену была позднее открыта и у некоторых природных алюмосиликатов (глауконитов, бентонитов). Первый искусственный минеральный ионообменный материал был получен в начале XX в., но из-за малой механической и химической стойкости и недостаточно высокой способности к ионному обмену он не нашел широкого применения в практике. Несколько позднее обработкой бурых углей серной кислотой был получен сульфоуголь, обладающий способностью к обмену катионов. Первый полимерный ионообменник, синтезированный Адамсом и Холмсом в 1935 г., положил начало большому количеству работ по синтезу новых ионообменных материалов, по изучению их свойств и применению в различных отраслях хозяйства. Наиболее ши Уоко используются ионообменные материалы в практике подготовки природных и очистки производственных сточных вод. Природные, искусственные и синтетические материалы, способные к обмену входящих в их состав ионов на ионы контактирующего с ними раствора, называются ионитами. Иониты, содержащие подвижные катионы, способные к обмену, называются катионитами, а обменивающие анионы — анионитами. Наибольшее практическое значение для очистки воды имеют органические полимерные иониты, которые являются полиэлектролитами. В этих соединениях одни ионы (катионы или анионы) фиксированы на углеводородной основе (матрице), а ионы противоположного знака являются подвижными, способными к обмену на одинаковые по знаку заряда ионы, содержащиеся в растворе. [c.80]


    Выбор защитного материала определяется не только его антикоррозионными свойствами, но и габаритами защищаемых аппаратов. Среди оёкладочных резин и эбонитов отдают предпочтение тем, которые могут вулканизоваться открытым способом под действием горячей воды или воздуха. Таким условиям, в частности, отвечает мягкая резина 829 на основе НК и СКБ, обеспечивающая длительную защиту от действия растворов минеральных солей и кислот до 70° С. Лучшей адгезией к стали и большей химической стойкостью обладает разработанщ>ш на Воронежском заводе СК бутадиен-стирольный эбонит ШП-65, обкладки из которого вулканизуют 24 ч кипящей водой [4]. На этом заводе эбонитом ШП-65 -защищено большое количество различных аппаратов, в том числе и крупногабаритных. Долговечность такой защиты подтверждается следующими примерами аппараты с эбонитовой обкладкой, в которых при 50—60°С находится разбавленная серная кислота или смесь ее с хлористым натрием, а также емкости с раствором сернокислого натрия эксплуатируются без ремонта обкладки уже свыше 5 лет. Технология оклейки аппаратов листовым эбонитом [c.317]

    Химическая стойкость силикатных материалов (бетон, керамика, диабаз и др.) различна в среде серной кислоты масса материалов может как уменьшаться, так и увеличиваться, поэтому их состояние обычно определяется визуально (осмотр). Силикатный материал считается химически стойким в данной среде, если образец его при испытании теряет или увеличивает свою массу на определенную величину, не разрушаясь при этом. Для большинства силикатных материалов допустимый предел уменьшения или увеличения массы после продолжительного испытания составляет 4—6%, а понижение прочности — не более 25%. [c.36]

    Фаолит применяют в химической промышленности в качестве одного из важных антикоррозийных конструкционных материалов. Из него изготовляют трубы, различную химическую арматуру, ванны, колонки и т. п. Он является эффективным заменителем цветных металлов (свинца, бронзы), кислотоупорных сплавов и керамики. Его стойкость к действию соляной кислоты имеет особо большое значение, так как во многих случаях из-за корродирующего действия соляной кислоты химические процессы приходилось вести на серной кислоте, хотя это делало их менее эффективными. Новые полимеризационные химически стойкие материалы (винипласт и др., стр. 241) также широко применяют в качестве конструкционного материала для химической промышленности однако большим преимуществом фаолита является его значительно более лысокая теплостойкость. [c.460]


    Для повышения механической прочности полиизобутилена в его состав вводят наполнители сажу и графит. В результате обработки такой смеси на вальцах получают листовой материал марки пег, который обладает высокой химической стойкостью к большинству кислот (к азотной кислоте до 50%), растворам щелочей и различных солей. При температуре выше 80° С полиизобутилен разрушается в концентрированной серной и азотной кислотах. [c.81]

    Сплавы железа с кремли ем, содержащие от И до 18% 51, обладают очень высокой коррозионной стойкостью и применяются в качестве кислотоупорного материала для изготовления различной химической аппаратуры, насосов, выпарных чашек и т. д. Высококремнистые чугуны устойчивы к окислительным. и неокислительным кислотам. Так, например, они устойчивы в серной, азотной, фосфорной, уксусной кислотах в соляной кислоте (особенно при высоких температурах) они заметно разрушаются. [c.73]

    Таким образом, результаты производственных испытаний полипропилена, проведенных как в чисты.х соляной и серной кислота.х. различной концентрации, так и в их смеси с различными органическими средами, встречакзщимися ири получении органических ядохимикатов, полностью подтверждают данные лабораторных испытаний различных авторов, говорящи.х и высокой. химической стойкости полипропилена и позволяют рекомендовать его в качестве конструкционного или обкладочного материала для изделий, работающих в подобных средах, [c.122]

    Промышленное применение прессованного, литого и пропитанного феноло-формальдегидными смолами графита в виде конструкций, а также различных элементов аппаратуры общеизвестно. Однако в высококонцентрированной серной кислоте при температурах 200—250° С указанные материалы становятся проницаемыми. Концентрированная серная кислота разрушает материал пропитки, чему способствует повышенная температура среды (происходит термическое разложение пропитывающего вещества) такой материал вследствие высокой пористости графита (пористость без пропитки достигает 20% и выше) непригоден к эксплуатации. В настоящее время освоены способы получения непроницаемого графита, обладающего высокой химической стойкостью в 50% H2SO4 при температуре кипения [72]. Детали теплообменных аппаратов, изготовленные из графитовых блоков после их пропитки политетрафторэтиленом, становятся непроницаемыми для жидкостей и весьма стойкими в концентрированной серной кислоте [73]. Непроницаемый графит получают различными методами, в частности,— путем погружения графитовых блоков в расплавленный цирконий или кремний [74]. По данным работы [75], пропитка кремнийорганическими веществами типа лаков К-44 и ЭФ-5 позволяет получать непроницаемый графит, устойчивый в 80%-ной H2SO4 при нормальном давлении и температуре 200° С и при давлении 2 атм и температуре 185° С. Перспективным, по-видимому, является также пирографит с углеродистой пленкой, образующейся при обработке графита в углеводородной среде [76]. [c.67]

    Благодаря указанным свойствам графитовые материалы применяют для изготовления графитовых фасонных изделий и футеровки аппаратов плитками. Ввиду пористости и фильтрующей способности прессованных углеродистых материалов, графитовые детали теплообменной аппаратуры и футеровочные плитки подвергаются специальной пропитке фенолформальдегидной смолой, лаком бакелитовым или этиноль , кремний-органическими соединениями, суспензией, полученной на основе фенолформальдегидных и полихлорвиниловых смол, чем достигается непроницаемость изделий и увеличивается их стойкость в кислотных и щелочных средах. Футеровка из пропитанного графита или изготовление аппаратуры целиком из пропитанного графита (теплопроводный материал АТМ) рекомендуется для борьбы с коррозией в химических производствах, при изготовлении и ремонте теплосбменной аппаратуры, работающей в агрессивных средах (соляная кислота любой концентрации, серная—до 60%, уксусная, муравьиная, щавелевая—любых концентраций, плавиковая кислота—до 50%, различные спирты, бензол, ксилол, дихлорэтан до температуры 140 С, взамен свинца, в сернокислотной, хлорорганической и других отраслях промышленности для изготовления теплообменной аппаратуры, трубопроводов и арматуры. [c.110]


Смотреть страницы где упоминается термин Серная кислота химическая стойкость различных материалов: [c.150]    [c.56]    [c.65]    [c.474]   
Справочник механика химического завода (1950) -- [ c.372 , c.375 , c.405 , c.412 , c.418 , c.422 , c.452 ]




ПОИСК





Смотрите так же термины и статьи:

Материалы стойкости

Различные кислоты

Серная кислота химические



© 2025 chem21.info Реклама на сайте