Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты, локализация цепей

    Как указывалось выше, реакционная способность нуклеотидных звеньев существенно зависит от наличия нековалентных взаимодействий с соседними звеньями это позволяет использовать химические методы для изучения вторичной структуры нуклеиновых кислот. В частности, влияние комплементационных взаимодействий оснований на их реакционную способность настолько велико, что возможно избирательно модифицировать звенья полинуклеотидной цепи, находящиеся в односпиральных зонах, и таким образом определить состав и размеры этих зон. Если к тому же известна первичная структура молекулы, то возможно провести и локализацию таких односпиральных участков в цепи. Исследования такого рода широко проводятся во многих лабораториях при помощи реакций с формальдегидом, акрилонитрилом, водорастворимым карбодиимидом, гидроксиламином и другими агентами. [c.18]


    Если двум частично комплементарным цепям плазмидной ДНК дать возможность ренатурировать, то образуются гетеродуплексные молекулы, которые можно исследовать с помощью электронного микроскопа. Поскольку при электронно-микроскопическом анализе в случае соответствующего приготовления образцов одно-и двухцепочечные участки нуклеиновых кислот различаются, существует возможность картирования гомологичных и негомологичных участков. С тех пор как в практику вошли способы проверки с применением рестриктаз и методы выявления гомологий ДНК в растворе по радиоактивности, методология гетеродуплексного анализа с помощью электронного микроскопа перестала широко применяться для анализа плазмидной ДНК- Хотя техника такого анализа требует большого экспериментального искусства и специального оборудования, она все же заслуживает рекомендации как способ точной локализации различий между плазмидами и наилучшей оценки организации плазмидной ДНК- [c.156]

    Теория оптической активности пока еще не позволяет установить точную структуру белка по спектру КД, хотя, как будет видно позже, в случае нуклеиновых кислот дело обстоит несколько лучше. Осложнения возникают из-за того, что очень часто хромофор не является асимметричным, а его асимметрично возмущают соседние группы. Кроме того, в случае белков (когда спектры КД регистрируют в области поглощения пептидных связей) имеется осложнение другого рода так как полипептид-ная цепь принимает многие конформации, зависящие от точной локализации пептидных связей в белке, спектр соответствует усредненным конформационным параметрам. Поэтому на практике используется эмпирический подход, заключающийся в том, что получают спектр ДОВ или КД молекул, структура которых точно определена методом рентгеноструктурного анализа, и устанавливают связь спектра со структурой молекулы. Этот спектр затем сравнивают со спектром белка, структура которого неизвестна, Главная проблема, которая возникает при использовании этого подхода, состоит в необходимости сделать допущение (которое редко доказывается), что структура макромолекулы в растворе (известно, что ДОВ и КД регистрируют в растворе) почти такая же, как в пленке, кристалле или сухом порошке (которые используют для рентгеноструктурного анализа), приготовленных с использованием того же растворителя. [c.466]

    Для начала, чтобы легче-было ориентироваться, ознакомимся бегло с природой, функцией и местами локализации основных классов нуклеиновых кислот внутри клеток. ДНК-это чрезвычайно длинные полимерные цепи, состоящие из многих тысяч соединенных друг с другом мономерных единиц - дезоксириб ону-клеотидов четырех разных типов, образующих характерные для каждого организма специфические последовательности. Молекулы ДНК обычно состоят из двух цепей. Хромосома прокариотических клеток представляет собой одну очень длинную двухцепочечную молекулу ДНК, собранную в компактное ядерное образование-нуклеоид. Напомним, что у прокариот генетический материал не окружен мембраной (разд. 2.4). [c.853]


    Одним из биохимических методов является метод перекрывающихся блоков он заключается в воссоздании последовательности нуклеиновой кислоты из фрагментов, полученных расщеплением ее в специфических точках. Для локализации фрагментов в составе исходной цепи используют перекрывающиеся последовательности оснований. Из всех методов изучения последовательности оснований метод перекрывающихся блоков применяли с наибольшим успехом. Этим методом удалось выяснить последовательность оснований более чем в пятнадцати различных тРНК и некоторых 55 РНК (см. табл. 1.2). Однако его дальнейшее применение для изучения крупных молекул РНК, содержащих более 150 оснований, по-видимому, ограничено возрастающей сложностью фрагментов, образующихся при расщеплении нуклеиновой кислоты, и существующим уровнем аналитических методов (см. гл. 3 и 4). [c.40]

    Можно считать, что для определения последовательности при помощи электронной микроскопии имеются все необходимые инструменты и методы. Каковы же перспективы такого исследования Одним из очевидных подходов является приложение этого метода к нуклеиновой кислоте с известной первичной структурой, желательно однонитчатой и лишенной элементов вторичной структуры. Подход5пцими объектами для этой цели могут быть различные тРНК и 5 S РНК. В растворе с низкой ионной силой длина вытянутой цепи тРНК должна быть 500 Я, а длина 5S РНК -800 R. Локализация ряда точек с заведомо известным расположением в пределах этих расстояний должна быть вполне разрешимой задачей. Удобными объектами для электронномикроскопических исследований могут явиться также сегменты РНК известной структуры, реплицированные так, как описано в гл. 8. Эксперименты такого рода не только явятся независимой проверкой других методов по определению структуры, но и источником необходимого опыта и свидетельством надежности результатов, получаемых при помоши электронной микроскопии. [c.206]

    Пример, который мы только что подробно рассмотрели, показывает, что эксперименты по тритиевому обмену в принципе являются достаточно информативными. Однако при исследовании более сложных систем разграничить разные кинетические процессы становится труднее. Еше большие трудности возникают при идентификации этих процессов. Ранние исследования на тРНК показали, что в этой молекуле происходит значительно более медленный обмен протонов, чем тот, который можно объяснить наличием водородных связей. В то время казалось, что сушествование столь низких скоростей связано с особенностями третичной структуры этой молекулы. Теперь, после всестороннего изучения процессов обмена в ДНК, детальный анализ данных для тРНК представляется слишком сложной задачей. Таким образом, основная проблема состоит в том, что при наблюдении лишь за обшей скоростью обмена теряется большая часть информации. Нужны методы, которые позволили бы независимо следить за обменом отдельных протонов или по крайней мере определенных групп протонов. Такую возможность дает использование метода ЯМР, который обладает достаточно высоким разрешением, чтобы можно было выполнить это требование. Следует иметь в виду, однако, что расшифровка спектров ЯМР представляет серьезную проблему. Примеры применения этого метода были приведены выше, когда мы рассматривали спектры ЯМР не способных к обмену протонов одиночных цепей. Другой подход состоит в прямом проведении химического обмена, отборе молекул, в которых произошло частичное замещение, и анализе локализации отдельных обменивающихся остатков путем фрагментации молекулы нуклеиновой кислоты и выявления локализации атомов трития в каждой точке последовательности. Такая процедура является довольно громоздкой, но затрачиваемые усилия вознаграждаются тем, что удается получить много ценной информации. [c.300]


Смотреть страницы где упоминается термин Нуклеиновые кислоты, локализация цепей: [c.143]    [c.242]    [c.24]    [c.242]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте