Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гаплоидный

    Большое значение имеет создание гаплоидов, позволяющее ускорить процесс селекции в 2 — 3 раза. Использование гаплоидных клеток и гаплоидных растений способствует обнаружению экспрессии введенного в клетку генома, редких рекомбинаций, рецессивных мутаций, которые в диплоидных растениях, как пра- [c.185]

    Геном эукариот обеспечивает сложнейшие программы развития и клеточной дифференцировки, которые осуществляются в результате последовательной активации и инактивации множества генов, взаимодействующих друг с другом. Эукариотическая клетка содержит во много раз больше генов, чем прокариотическая. Ниже приведено содержание ДНК в разных организмах (п. н. в расчете на гаплоидный геном)  [c.185]


    РИС. 15-27. Мейоз. Деление клетки, приводящее к образованию гаплоидных гамет. [c.266]

    Для прокариот характерны гаплоидные ядра, хотя при половой конъюгации бактерий, а также в некоторых экспериментальных условиях образуются частично диплоидные клетки, содержащие двойной набор отдельных генов. [c.18]

    Проверка плотности соединений при промежуточном и рабочем давлениях производится при помощи гаплоидного течеискателя или обмазкой швов, сальников, арматуры и разъемных соединений мыльным раствором. При обнаружении неплотности соединений сосудов, давление плавно снизить и устранить недостатки. Принятые меры записать в ремонтный журнал (карту). [c.16]

    Гаплоидные и диплоидные клетки [c.42]

    Гаплоидные растения и слияние клеток [c.268]

    Недавно разработанные методы, позволяющие получать целые растения из единичных клеток, а также осуществлять слияние растительных клеток, могут иметь революционизирующее значение для селекции растений. Они могут послужить также основой нового метода научения фенотипического выражения генов у растений. Так, например, из гаплоидных ядер пыльцевых зерен удалось вырастить целые гаплоидные растения . Поскольку клетки гаплоидных растений содержат, по-вндимому, только по одной копии -большого числа генов, то в таких растениях легко обнаружить мутации, вызванные облучением или химическими агентами, что в свою очередь может способствовать значительному ускорению селекционных работ. [c.268]

    Гаплоидные растения и слияние клеток, т. 3 стр. 268 [c.381]

    У человека и высших животных в результате мейоза образуются гаметы— яйцеклетка и сперматозоиды. При их слиянии возникает снова диплоидное ядро, из которого путем последовательных митозов развивается взрослый организм. Стадия мейоза характерна для жизненного цикла всех эукариот, однако отнюдь не всегда этот процесс протекает в период, аналогичный соответствующему моменту жизненного цикла человека. Так, клетки многих простейших и грибов обычно гаплоидны. После слияния двух гаплоидных ядер с образованием диплоидной клетки быстро наступает мейотическое деление, в результате которого вновь возникают гаплоидные особи. Чередование гаплоидных и диплоидных фаз жизненного цикла часто встречается у низших растений и примитивных животных. Например, гаметы папоротника падают на почву и [c.42]

    Размеры гаплоидных геномов у ряда организмов [c.28]

    Половое размножение получает окончательное развитие у эукариот, где рост многоклеточного организма начинается со слияния двух гаплоидных гамет — яйцеклетки и сперматозоида. Каждая гамета несет полный набор генетических инструкций образовавшееся после слияния ядер оплодотворенное яйцо (зигота) является диплоидным. Диплоидная клетка содержит два полных набора генетических матриц, полученных от двух совершенно разных родителей. Это дает развивающемуся организму огромные преимущества. В самом деле, если какой-либо ген, полученный от одного из родителей, окажется дефектным, то весьма мало вероятно, что соответствующий ген от второго родителя будет тоже дефектным. Кроме того, половое размножение — это средство смешивания генов, и каждый из нас получает не просто половину генов от матери и половину от отца, но также какие-то гены от дедушек и бабушек, от прадедушек и прабабушек и т. д. [c.39]


    Клеточные стенки дрожжей и грибов состоят из глюканов, хитина и маннан-белкового комплекса. Некоторые сильно разветвленные ман-нановые цепи играют роль видоспецифнчных антигенов [118]. Подобно антигенам поверхностей животных и бактериальных клеток, антигены растительных клеток характеризуются огромным структурным многообразием, что имеет важное значение для медицины. Удобным объектом для изучения генетических аспектов биосинтеза ферментов, участвующих в синтезе маннанов, являются дрожжи. Их можно выращивать как в гаплоидных, так и в гибридно-диплоидных формах, что значительно облегчает генетический анализ. [c.397]

    Какова частота появления новых мутаций Исходя из данных по содержанию гаплоидной ДНК (табл. 1-3), можно рас- [c.40]

    СЛИЯНИИ подвижных гамет, немедленно претерпевают мейотическое деление с формированием гаплоидных спор. Хромосома хламидомонады довольно подробно картирована, и этот организм часто используется в биохимических генетических исследованиях. [c.48]

    Молекулярные массы ДНК, эквивалентные гаплоидным геномам органелл клеток высших растений [ПО, 68], приблизительно следующие (в дальтонах) ядра 10 , хлоропластов 97 - 10 , митохондрий 108 138 10 . [c.237]

    В ядрах клеток дрожжей, насекомых, червей содержится в 5—10 раз, а у млекопитающих в несколько сотен раз больше ДНК, чем в клетке Е. соИ. Содержание ДНК в расчете на гаплоидный геном в целом увеличивается с возрастанием сложности организма. У амфибий и растений оно сильно варьирует от вида к виду и может значительно (в 10 раз и более) превышать количество ДНК в клетках млекопитающих. Однако было бы неверным считать, что прогрессивная эволюция, как правило, сопровождается увеличением содержания ДНК в расчете на гаплоидный геном. Известны также случаи, когда достаточно близкие виды содержат количество ДНК, различающееся в несколько раз. Это явление описано как парадокс содержания ДНК (англ. С value paradox), который до сих пор не получил достаточно определенного объяснения. Таким образом, размеры геномов не коррелируют с тем количеством ДНК, которое предназначено для выполнения функции кодирования бе.лков. [c.185]

    Наследственный аппарат эукариотических клеток существенно отличается от прокариотических хромосом. Наиболее очевидное отличие — огромное количество ДНК в эукариотических клетках. Например, гаплоидный геном человека состоит из З-Ю пар ос-иований (п. о.), тогда как геном . соИ включает всего 10 п. о. Кроме того, геном эукариот разделен на несколько хромосом, которые претерпевают характерные циклы конденсаций и декон-Денсаций в ходе деления клеток. Наконец, в клетках эука-РНот больше генов и их регуляция значительно сложнее, чем у прокариот. [c.233]

    У любых организмов в гаплоидном наборе генов содержится, как правило, лишь один ген данного типа. Что же касается рибосомной РНК, то ее гены представлены в одном геноме множеством копий. Так, например, у дрозофилы обнаруживается 130—190 копий гена 45S-PPHK. [c.227]

    Важное преимущество грибов с точки зрения их использования для генетических исследований состоит в том, что, подобно прокариотам, они на протяжении большей части жизненного цикла сохраняют гаплоидный набор хромосом. Это позволяет легко выявить биохимические дефекты, связанные, в частности, с нарушением синтеза определенных, необходимых для их существования соединений. В то же время грибы можно скрещивать и определять частоту кроссинговеров, используя эти данные для составления генетических карт. Именно поэтому изучение ауксотрофов нейроспоры, начатое в 1940 г. Бидлом и Татумом, обычно считают началом биохимической генетики. Явление рекомбинации у бактерий было открыто Ледербергом несколькими годами позже. [c.267]

    Какой бы механизм рекомбинации ни был предложен, в нем всегда должно быть учтено явление генной конверсии, или нереципрокной рекомбинации [220]. Это явление впервые было обнаружено при изучении генетики грибов, у которых можно отдельно исследовать каждый из четырех гаплоидных продуктов мейоза (тетрадный анализ, гл. 1, разд. Г, 2). Иногда вместо обычного менделевского отношения 2 2 для распределения генов в случае гетерозиготного локуса в потомстве наблюдали отношение 3 1. Это означает, что в одной из рекомбинантных. хромосом произошел возврат к родительскому типу. Механизм, лежащий в основе этого явления, может быть связан с неправильным спариванием оснований в гетеродуплексных участках. Чаще всего в точке,. [c.286]

    В геноме такого простого эукариота, как плесневый гриб Di tyoste-Иит, содержится в 11 раз больше ДНК, чем в геноме Е. соИ. У дрозофилы— высшего организма с наименьшим количеством ДНК—размер гаплоидного генома в 24 раза больше размера генома Е. соИ. Кодирующая емкость генома человека в 600 раз больше, чем у бактерии (табл. 1-3). Столь большое количество ДНК является одной из причин, затрудняющих изучение эукариотического генома. Другая трудность обусловлена тем, что процесс транскрипции генов у эукариот может сильно изменяться как во времени, так и в зависимости от условий окружающей среды. Следовательно, механизмы регуляции фенотипического выражения генов должны быть очень сложными. [c.296]

    ГЕНОМ, совокупность генов, локализованных в гаплоидном наборе хромосом данного организма. Половые клетки (т. наз. гаплоидные) содержат один Г., соматич. клетки высших организмов (т. наз. диплоидные)-два один Г. отцовский, другой - материнский. [c.519]


    Клонирование в дрожжах. Среди дрожжей наиболее полно изучен вид S. erevisiae. У этого вида в гаплоидных клетках содержится 17 хромосом, в их составе идентифицировано несколько сотен генов. Большинство штаммов дрожжей содержат автономно реплицирующуюся кольцевую ДНК длиной 2 мкм. Плазмида S pl S. erevisiae содержит около 6300 пар оснований и имеет 50—100 копий на клетку. Ее гибриды с плазмидами обычно и используют в [c.124]

    С. Магешвари. В настоящее время в культуре гаплоидные растения получают из изолированных пыльников (андрогенез), изолированных семяпочек (гиногенез) из гибридного зародыша, у которого в результате несовместимости потеряны отцовские хромосомы (партеногенез). Новые сорта ячменя — Исток и Одесский-15 — были выведены благодаря комбинации партеногенетического метода с культурой изолированных зародышей за 4 года вместо 10 — 12 лет, необходимых для обычной селекции. [c.186]

    Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40—50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза — специального процесса, в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке, переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. [c.40]

    По всей вероятности, доминирование диплоидной фазы у высших растений и животных обусловлено способностью гетерозиготы выживать даже при возникновении одной или нескольких крайне вредных мутаций. Для ученых, занимающихся биохимической генетикой, использование гаплоидных организмов дает огромные методические преимущества, лозволяя с легкостью выявлять рецессивные мутации. [c.43]

    Нейроспора может размножаться и посредством гаплоидных спор — конидий. Гаплоидные мицелии представлены двумя типами, и конидии или мицелии одного типа способны оплодотворять клетки другого типа, (находящиеся в специальном образовании — протоперитециуме) с образованием зигот. Последние немедленно проходят мейоз и митоз, форми-. руя восемь аскоспор. [c.47]

    Дрожжи — это грибы, приспособившиеся к существованию в среде с высоким содержанием сахара они остаются обычно одноклеточными и размножаются путем почкования (рис. 1-8). Время от времени их гаплоидные клетки попарно сливаются и образуют диплоидные клетка и половые споры. Одни дрожжи относятся к аскомицетам, другие — к базидиомицетам. Sa haromy es erevisiae, активное начало как пекарских, так и пивных дрожжей, является аскомицетом, способным к неог-. раниченному росту как в диплоидной, так и гаплоидной фазе, причец диплоидные клетки несколько крупнее гаплоидных [37]. [c.47]

    Семена растений состоят из трех четко различающихся частей. Зародыш развивается из зиготы, образованной в результате слияния ядра спермия, происходящего из пыльцевой клетки, с ядром яйцеклетки. Оплодотворенная яйцеклетка у голосеменных окружена питательным слоем, или эндоспермом, происходящим из той же гаметофитной ткани, что и яйцеклетка, и потому гаплоидным. У покрытосеменных в спермин формируются два ядра одно из них оплодотворяет яйцеклетку, тогда как другое сливается с двумя гаплоидными полярными ядрами, образующимися в женском гаметофите. (Эти полярные ядра формируются в ходе того же митотического деления, при котором образуется яйцеклетка.) В результате развивается триплоидный (Зп) эндосперм. [c.63]

    Масса ДНК гаплоидных геномов хлоропластов или митохондрий приблизительно в 10 000 раз меньше, чем масса ДНК ядер. Генетическая информация, содержащаяся в этих органел-лах, находится в тех же соотношениях. [c.237]


Смотреть страницы где упоминается термин Гаплоидный: [c.85]    [c.86]    [c.103]    [c.104]    [c.186]    [c.250]    [c.266]    [c.267]    [c.186]    [c.18]    [c.43]    [c.47]    [c.61]    [c.339]    [c.208]   
Искусственные генетические системы Т.1 (2004) -- [ c.0 ]

Что если Ламарк не прав Иммуногенетика и эволюция (2002) -- [ c.199 ]




ПОИСК







© 2025 chem21.info Реклама на сайте