Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Геном гаплоидный человека

    Степень разрешения, достигаемая при картировании, определяется используемыми методами. Наиболее современные методы окрашивания позволяли выявить до 1000 полос на всех 23 хромосомах человека. В среднем на хромосому при этом приходится 50 полос, хотя на некоторых хромосомах их можно обнаружить в несколько раз больше, чем на других (сравни хромосомы 1 и 22 в табл. 18.9). Гаплоидный геном человека состоит из 3 10 п.н. Каждая полоса содержит 3-10 п.н., что соответствует нескольким сотням генов. Таким образом, пределом разрешения картирования с привлечением цитогенетических методов являются расстояния, соответствующие сотням генов. [c.316]


    Принцип этого метода прост. Рассмотрим его на конкретном примере картирования некоего фрагмента ДНК человека величиной 14,9 т.п.н., клонированного на фаговом векторе. Функция этого фрагмента ДНК не ясна. Известно, что он присутствует в количестве не более одной-двух копий на гаплоидный геном. Метафазные хромосомы человека, распределенные на стандартном предметном стекле, обрабатывали с целью удаления примесей связанной РНК и денатурации хромосомной ДНК. В качестве зонда использовали клонированный фрагмент ДНК, радиоактивно меченный ( Н) с помощью ник-трансляции. Пред- [c.314]

    Несмотря на то что число идентифицированных локусов быстро увеличивалось, генетическая карта человека до самого последнего времени почти сплошь состояла из белых пятен. Рассмотрим такой пример. 1000 генов, каждый из которых имеет в среднем размер 10 т.п.н. (экзоны плюс интроны), составляют лишь 10 т.п.н. из 3-10 т.п.н. гаплоидного генома человека. Эти гены могут быть разделены миллионами пар оснований, что затрудняет применение метода прогулки по хромосоме или рекомбинационного анализа, поскольку число родословных, позволяющих проводить такой анализ, мало. Что же касается диагностики, то использование этих методов ограничивается отсутствием информации о мутантных генах и дефектных генных продуктах, ответственных за многие генетические заболевания. К счастью, теперь ситуация здесь в корне изменилась благодаря появлению нового подхода, на котором мы остановимся ниже. Этот подход позволяет проследить за судьбой генов в нескольких поколениях он пригоден для целей пренатальной диагностики, анализа распределения гена в популяции, анализа сцепления и картирования. Его можно использовать и для других организмов. Например, таким способом картируют хромосомы кукурузы, что имеет большое научное значение и может найти применение в сельском хозяйстве. [c.353]

    Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при 1-м делении мейоза каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом (рис. 15-9 А). Из одного только этого факта следует, что клетки любой особи могут в принципе образовать 2" генетически различающихся гамет, где п-гаплоидное число хромосом. Нанример, у человека каждый индивидуум способен образовать по меньшей мере 2 = 8,4-10 генетически различных гамет. Однако на самом деле число возможных гамет неизмеримо больше из-за кроссинговера (перекреста) - процесса, происходящего во время длительной профазы 1-го деления мейоза, когда гомологичные хромосомы обмениваются участками. У человека в каждой паре гомологичных хромосом кроссинговер происходит в среднем в двух-трех точках. Как показано на рис. 15-9 Б, такой процесс перетасовывает гены любой хромосомы в гаметах. [c.17]


    Гаплоидный набор человека состоит примерно из 310 пар нуклеотидов (п. н.). Если размер гена в среднем равен 3000 п. н., то, допустив, что гены не перекрываются, а транскрипция идет лишь в одном направлении, можно вычислить, что геном человека включает до 10 различных генов. Считается, что их в геноме человека не более 10 и лишь 10% геномной ДНК непосредственно кодируют белки. О функциональном значении остальных 90% известно крайне мало. [c.36]

    Гаплоидный геном человека состоит из 3,5-10 пар оснований и примерно из 1,7-10 нуклеосом. Следовательно, каждая из 23 хроматид гаплоидного [c.67]

    Гаплоидный геном каждой клетки человека представлен 3,5-10 парами оснований и состоит из 23 пар хромосом. Этого достаточно для кодирования [c.68]

    Гены гемоглобина. Аминокислотная последовательность каждой глобиновой цеш кодируется своим собственным геном. В гаплоидном наборе у нормального человека присутствует по крайней мере по одному гену а, Р, у, 5, , и по крайней мере по два таких гена-в диплоидном наборе. В большинстве популяций человека ген а-цепи существует в дуплицированном состоянии, причем отличий между двумя а-генами не [c.75]

    Если принять, что число структурных генов в гаплоидном наборе человека от 100 000 до 1 000 000 (по оценкам разных исследователей), то суммарная частота генных мутаций составит от 1 до 10 на гаплоидный геном. [c.511]

    Любой индивидуальный ген занимает лишь небольшую часть генома живого организма. В то же время размер генома даже наиболее просто организованных бактерий в среднем составляет 2-106 П.О., а суммарный размер молекул ДНК, составляющих гаплоидный геном человека и высших животных, по крайней мере, на три порядка больше. Из этого следует, что уникальные гены, представленные в гаплоидном геноме только одной копией, затеряны среди других последовательностей генома, и для работы с индивидуальными рекомбинантными ДНК требуется их очистка от ненужного генетического материала. Такая задача в генной инженерии решается через создание репрезентативных (представительных) клонотек последовательностей нуклеотидов ДНК или, иначе говоря, клонотек генов. [c.155]

    Укороченные последовательности UNE-I ( 5-10 копий на гаплоидный геном человека) [c.204]

    Сравнительной простоте анатомии С. elegans соответствует такая же простота генетического аппарата. В 6 парах гомологичных хромосом содержится, по-видимому, всего лишь около 3000 жизненно важных генов. Гаплоидный геном содержит 80 х 10 пар нуклеотидов, что примерно в 17 раз больше, чем у Е. соИ и в 38 раз меньше, чем у человека. В настоящее время с помощью мутациогшого анализа идентифигщровано примерно 800 генов. Среди них гены, влияющие на такие признаки, как форма и поведение червей, гены, кодирующие такие известные белки, как миозин, и гены, контролирующие характер и направление развития. Кроме того, получена библиотека генома в виде большого набора перекрывающихся фрагментов ДНК (см. разд. 5.6.3). [c.87]

    Наследственный аппарат эукариотических клеток существенно отличается от прокариотических хромосом. Наиболее очевидное отличие — огромное количество ДНК в эукариотических клетках. Например, гаплоидный геном человека состоит из З-Ю пар ос-иований (п. о.), тогда как геном . соИ включает всего 10 п. о. Кроме того, геном эукариот разделен на несколько хромосом, которые претерпевают характерные циклы конденсаций и декон-Денсаций в ходе деления клеток. Наконец, в клетках эука-РНот больше генов и их регуляция значительно сложнее, чем у прокариот. [c.233]

    В геноме такого простого эукариота, как плесневый гриб Di tyoste-Иит, содержится в 11 раз больше ДНК, чем в геноме Е. соИ. У дрозофилы— высшего организма с наименьшим количеством ДНК—размер гаплоидного генома в 24 раза больше размера генома Е. соИ. Кодирующая емкость генома человека в 600 раз больше, чем у бактерии (табл. 1-3). Столь большое количество ДНК является одной из причин, затрудняющих изучение эукариотического генома. Другая трудность обусловлена тем, что процесс транскрипции генов у эукариот может сильно изменяться как во времени, так и в зависимости от условий окружающей среды. Следовательно, механизмы регуляции фенотипического выражения генов должны быть очень сложными. [c.296]

    В ДНК некоторых прокариот (археобактерии), в ядре и митохондриях эукариот кодирующие области прерываются большими некодирующими ДНК-последовательностями (до 5000 пар нуклеотидов) По предложению У Гилберта (1978) кодирующие области называют экзонами, или доменами, некодирующие — нитронами Например, в генах тяжелой Н-цепи иммуноглобулинов (1д) находится не менее 4 интронов и 5 экзонов, в гене яичного белка (овальбумина)7 интронов и 8 экзонов, из 3,5 биллионов пар нуклеотидов в ДНК гаплоидного генома человека кодирующими являются менее 10% Прерывистость генов у эукариот — явление обычное, хотя известны гены, в которых подобная прерывистость не обнаружена (в генах интерферона, гистонов) [c.161]

    Генетический аппарат в клетках эукариот организован в форме нескольких линейных хромосом, в которых ДНК прочно связана с белками-гистонами, обеспечивающими упаковку и упорядочение ДНК в виде структурных единиц—н уклеосом (учитывая при этом "код упаковки хроматина" и экстраполируя его на клетки большинства эукариот) Так, в гаплоидной клетке Sa haromy es erevisiae содержится 17 хромосом, в каждой из которых детектировано 1000 кЬ и, следовательно, число генов могло бы достигать в такой клетке 11 ООО, для 23 хромосом в гаплоидной клетке человека, где в одной хромосоме содержится 125 ООО кЬ, число генов должно бы возрасти до 2 млн Предположительно близкое число генов могло бы оказаться в гаплоидных клетках кукурузы, где имеется 10 хромосом, в клетках кролика с 22 хромосомами, или мыши с 20 хромосомами Однако, в хромосомах эукариотических организмов содержится генов меньше, чем некодирующих участков (спейсеров, или разделителей), и также имеется масса сходных между собой фрагментов ДНК, повторяющихся десятки-сотни тысяч раз Вот почему, например, у человека лишь [c.176]


    В другой части хромосомы 6 расположена другая группа генов, которые называют генами HLA-D. Они тоже участвуют в отторжении трансплантатов, хотя действуют по-другому. Они также имеют много аллелей и необходимы для функционирования Т-кнеток другого типа, которые называются Т-хелперами (разд. 14.9). У каждого человека есть две хромосомы 6 (диплоидный набор) и, следовательно, два аллеля каждого из генов А, В, С, а также различные D-гены (по-видимому, всего три). (Есть по крайней мере 40 аллелей А, 59 аллелей В и 12 аллелей С.) Особая комбинация генов, детерминирующих антигены А, В, С и D на хромосоме, называется ганлотипом (сокращение от гаплоидный генотип ). Поэтому у каждого человека есть два гаплотипа, по одному на каждой хромосоме 6. Ввиду того, что гены одного гаплотипа находятся на одной и той же хромосоме и расположены не очень далеко друг от друга, во время мейоза они остаются вместе и вместе передаются от родителя к ребенку. Возможны миллионы комбинаций аллелей, однако из-за наличия гаплотипов между членами семьи проявляется больще сходства, чем между людьми, не состоящими в родстве. Кроме того, некоторые гаплотипы встречаются чаще, чем другие, а некоторые дают более сильный иммунный ответ по сравнению с другими. [c.270]

    ЧТО гаплоидный геном плодовой мутки состоит всего из четырех хромосом. Следовательно, диплоидные соматические клетки дрозофилы содержат 2x4 = 8 хромосом каждая, тогда как соматические клетки Pisunt содержат 14, а соматические клетки человека — 46 хромосом. [c.26]

    Ген-это функциональная единица, часть молекулы ДНК. Полное описание структуры и организации генов какого-либо организма подразумевает описание последовательности нуклеотидов в ДНК этого организма. Однако описание полной последовательности нуклеотидов в молекулах ДНК даже мельчайших вирусов составляет колоссальную проблему, практически неразрешимую для молекул ДНК высших организмов. Действительно, существующее у всех видов организмов генетическое разнообразие свидетельствует о том, что ни одна последовательность нуклеотидов в геноме не является уникальной и инвариантной для всех особей вида. Геном Е. соИ состоит примерно из 3,2-10 нуклеотидных пар (н.п.). Ясно, что даже для такого небольшого генома, как Е. соИ, возможно огромное количество различных нуклеотидных последовательностей. Для каждой нуклеотидной пары существуют четыре возможности (АТ, ТА, Gr , G), и, следовательно, число возможных нуклеотидных последовательностей в генотипе Е. oli составляет = jQi,93 io6 гJJJQДQ возможных последовательностей в молекуле ДНК человека, очевидно, много больще этого огромного числа. Содержание ДНК в гаплоидном геноме некоторых эукариотических организмов представлено на рис. 5.1. Числа на шкале показывают, во сколько раз количество ДНК превышает количество ДНК в геноме Е. соИ. [c.127]

    Традиционные методы генетического анализа, разработанные Менделем, основаны на переходе из диплоидного состояния в гаплоидное в процессе мейоза. Восстановление диплоидности происходит при оплодотворении. Изменения плоидности обеспечивают сегрегацию генов, то есть их распределение в потомстве. Несколько десятилетий назад было показано, что соматические клетки эукариот можно размножать in vitro, т.е. поддерживать в виде так называемых клеточных культур (рис. 18.1). У этих культивируемых in vitro клеток в норме не происходит смены диплоидной и гаплоидной фаз. Тем не менее существуют различные способы, позволяющие изучать определенные генетические феномены на культурах клеток. Существенным преимуществом клеточных культур является то, что возникновение новой клеточной генерации занимает несколько часов, тогда как появление нового поколения на уровне целой особи-это месяцы или годы. Дополнительное преимущество для изучения генетики человека-это возможность комбинировать наследственные детерминанты клеток в культуре, поскольку проведение направленных скрещиваний между людьми, естественно, невозможно. Недавно были разработаны способы получения гибридных клеток, содержащих наследственную информацию различных видов организма, например человека и мыши. Такие гибриды нельзя получить другими способами, т.е. на уровне целых организмов. [c.290]

    Гаплоидный геном человека содержит 3-10 п.н. Повторяющиеся последовательности ДНК составляют около 30%. Количество копий этих последовательностей в геноме человека варьирует от единиц до нескольких тысяч. Остальные 70%, т.е. приблизительно 2-10 п.н., представляют собой уникальные последовательности, присутствующие в виде одной или единичных копий. Около 90% РНК, транскрибируемой с уникальной ДНК (гяРНК), не покидает ядро клетки. Только 10%, что соответствует в хромосоме 2-10 п.н., транспортируется в цитоплазму, где происходит трансляция. Исходя из того, что процессирован-ная мРНК, кодирующая белок, состоит в среднем из 1500 нуклеотидов, можно подсчитать, что человеческий геном содержит информацию для кодирования около 130000 белков (2-10 1 500= 130000). Часто структурные гены, кодирующие те или иные полипептиды, содержатся в геноме человека в виде нескольких копий. Нет точного способа определения доли таких генов или степени их повторяемости. Тем не менее есть основания полагать, что число различных полипептидов, кодируемых геномом человека, находится в диапазоне от 30000 до 100000. [c.293]

    Одни из фундаментальных законов генетики гласит, что оба родителя вносят равный вклад в генетическую конституцию потомства, поскольку одни полный набор генов потомок получает от матери, а другой - от отца. Таким образом, когда из одной диплоидной клетки путем мейоза образуются четыре гаплоидные (разд. 15.2.1), в каждой из этих клеток ровно половину всех геиов должны составлять материнские гены, а другую половину - отцовские. Проверить справедливость этого утверждеиия для сложного организма в частности организма человека, разумеется, невозможно. К счастью, существуют и такие организмы, например грибы, у которых можно выделить и подвергнуть анализу все четыре дочерние клетки, образовавшиеся в результате мейоза из одной-единственной клетки. Подобный анализ показал, что из строгих генетических правил есть исключеиия. Иногда мейоз дает три копии материнского варианта (аллеля) данного гена и лишь одну копию отцовского аллеля, что свидетельствует о превращении одной из двух копий отцовского аллеля в копию материнского аллеля. Этот феномен получил название конверсии генов. Часто конверсия генов бывает связана с общей генетической рекомбинацией, и возможно, это явление играет немаловажную роль в эволюции некоторых генов (см. разд. 10.5.2). Полагают, что конверсия генов представляет собой прямое следствие действия двух механизмов -общей генетической рекомбинации и репарации ДНК. [c.309]

    Ген - это последовательность нуклеотидов, представляющая собой единицу активности для образования молекулы РНК. Хромосома состоит из одной-единственной невероятно длинной молекулы ДНК, содержащей множество генов. В молекуле хромосомной ДНК имеются и другие типы нуклеотидных последовательностей, необходимых для ее функционирования сайт инициации репликации и теломера (они обеспечивают репликацию молекулы ДНК), а также центромера (она служит для прикрепления ДНК к митотическому веретену). Гаплоидный геном человека сооержит 5x7 нуклеотиОных пар, которые распределены межоу 22 различающимися аутосомами и 2 половыми хромосомами По-видимому, лишь несколько процентов этой ДНК кодируют белки. [c.118]

    В отличие 01 яйцеклеток у сперматозоидов дифференцировка в основном осуществляется носле того, как они завершают мейоз и становятся гаплоидными. Благодаря цитоплазматическим мостикам, каждый развивающийся гаплоидный спермий может получать весь набор продуктов полного диплоидного генома. То, что дифференцировкой спермиев, так же как и дифференцировкой яйцеклеток, управляет диплоидный геном, важно по двум причинам. Во-первых, в исходном диплоидном геноме, как правило, содержится некоторое число дефектных аллелей -рецессивных летальных мутаций (разд. 15.1.4) гаплоидная клетка, получившая один из этих дефектных аллелей, весьма вероятно, погибнет, если она не будет обеспечена продуктами нормального аллеля, закодированными в других ядрах, которые его содержат. Во-вторых, у некоторых организмов (например, у человека) одни спермии получают при мейозе Х-хромосому. а другие - У-хромосому. Поскольку Х-хромосома содержит много весьма важных генов, отсутствующих в У-хромосоме, можно думать, что если бы не цитоплазматические мостики между развивающимися спермиями, то те из них, которые получили У-хромосому, не выжили бы, и в результате в следующем поколении не было бы ни одного мужчины. [c.40]

    ДИПЛОИДНЫ, НО самцы развиваются из неоплодотворенных яиц и поэтому гаплоидны. В популяции, в которой особи обоих полов диплоидны, коэффициент родства между сибсами такой же, как между одной из родительских особей и ее потомком (г/=0,5 см. табл. 3,4), Однако у самки перепончатокрылых в результате гапло-диплоидии больше общих генов с родной сестрой, чем с собственными дочерьми т, е. генотипы сестер идентичны по всем генам, которые они получают от своих отцов (у него всего один набор), и в среднем по половине генов, которые они получают от своих матерей. Поэтому коэффициент родства между родными сестрами у перепончатокрылых равен не 0,5 а (0,5) X Х(1) + (0,5) (0,5) =0,75. Таким образом, в этом случае дочерям следует помогать своим матерям охранять яйца и снабжать кормом молодь, а не производить собственных потомков, так что генетическая композиция перепончатокрылых предрасполагает их к развитию такого сообщества, в котором стерильные рабочие самки заботятся о своих родных сибсах. Из всего этого вытекают и дальнейшие следствия, для ознакомления с которыми мы отсылаем читателя к работе Гамильтона [20]. Сравнительно недавно идеи Гамильтона были использованы в изучении общественной жизни высших организмов — птиц, млекопитающих и даже человека (см. [44] критические замечания см. [35]). [c.77]

    На основании сходства ГР, ПРЛ и ХС несколько лет назад была высказана гипотеза, согласно которой гены, детерминирующие синтез этих гормонов, возникли в результате дупликации одного гена-предшественника. С помощью метода генной инженерии установлено следующее у приматов и человека существует несколько генов для ГР и ХС единственный пролактиновый ген, кодирующий очень сходный белок, по размеру в 5 раз превосходит гены ГР и ХС гены группы ГР—ХС локализованы у человека в хромосоме 17, а ген пролактина—в хромосоме 6 обнаружена заметная эволюционная дивергенция этих генов. В тканях крысы и крупного рогатого скота на гаплоидный геном приходится по одной ко- [c.172]

    Вполне возможно, что новых мутаций в расчете на геном и поколение возникает много, однако получение достоверной оценки их частоты пока невозможно. Общее количество ДНК в гаплоидной клетке человека равно 3,0 — 3,5 X 10 г, а гаплоидный геном содержит около 3 — 3,5 х 10 пар нуклеотидов. Поскольку одрш кодон состоит из трех нуклеотидных пар, максимально возможное число кодонов равно приблизительно 1 х 10 . Учитывая приведенную оценку, можно предположить, что частота кодонной мутации, приводящей к замене одного определенного основания, составляет 2,5 х 10 . Чтобы охарактеризовать общую мутабильность на кодон. [c.188]

    Последствия цитоплазматической передачи генов для некоторых животных, в том числе и для человека, более серьезны, нежели для дрожжей. Две сливающиеся гаплоидные дрожжевые клетки 1шеют одинаковую величину и вносят в образующуюся зиготу одинаковое количество митохондриальной ДНК. Таким образом, у дрожжей митохондри шьный геном наследуется от обоих родителей, которые вносят равный вклад в генофонд потомства (хотя, как мы уже видели, спустя несколько генераций отдельные потомки нередко будут содержать митохондрии только одного из родительских типов). В отличие от этого у высших животных яйцеклетка вносит в зиготу больше цитоплазмы, чем спермий, а у некоторых животных спермин могут вообще не вносить цитоплазмы. Поэтому можно думать, что у высших животных митохондриальный геном будет передаваться только от одного родителя (а именно по материнской линии) и действительно, это было подтверждено экспериментами. Оказалось, например, что при скрещивании крыс двух лабораторных линий с митохондриальной ДНК, слегка различающейся по последовательности нуклеотидов (типы А и В), получается потомство, содержащее митохондриальную ДНК только материнского типа. [c.60]

    Частота спонтанных мутаций. В естественных условиях мутации возникают сравнительно редко. У дрозофилы, например, мутация белых глаз white образуется с частотой 1 100 ООО гамет. Средняя частота мутаций на один ген в поколении у бактерий в среднем равняется 1 10 000 000. У человека многие гены мутируют с частотой 1 200 ООО гамет, а средняя общая частота мутаций на один локус в поколении составляет 4,1ХЮ . Взятые по отношению к каждому отдельному гену, эти цифры очень малы. Но если учесть, что в гаплоидном наборе хромосом высшего, организма имеется несколько тысяч генов и каждый из них мутирует хотя бы с частотой 1 1 ООО ООО, то при этом общее число гамет с мутациями будет не так мало. Расчеты показывают, что у дрозофилы на каждые 50—100 гамет возникает в среднем не менее одной мутации. При этом следует иметь в виду, что далеко не все наследственные изменения, особенно малые физиологические мутации, удается обнаруживать. [c.188]

    На рис. 20 представлены схема высокоэффективного варианта аллель-специфической ПЦР, разработанного нами и использованного для диагностики мутации FV Leiden при тромбофилиях, а также полученные с помощью данного метода результаты [286]. Эта мутация локализована в экзоне 10 гена фактора V системы свертывания крови человека и часто ассоциирована с синдромом ее повышенной свертываемости. В соответствии с последовательностью нуклеотидов анализируемого участка генома синтезируют два праймера, З -концевой нуклеотид одного из которых комплементарен мутантному нуклеотиду матричной ДНК, а у другого - нуклеотиду дикого типа (см. рис. 20 й, б). Для усиления специфичности действия праймеров вблизи их 3 -концов были введены некомплементарные матрице нуклеотиды. Для исключения ложноотрицательных результатов в пробах, где продукт ПЦР отсутствует, повышали число циклов ПЦР сверх оптимального, после чего, если система работает нормально, продукт ПЦР появляется и в этих пробах, что может служить дополнительным внутренним контролем. Другой тип разработанных нами универсальных аллель-спе-цифических праймеров содержит З -концевой нуклеотид, всегда некомплементарный матрице, а мутантный нуклеотид матрицы попадает в его внутреннюю часть (рис. 20 а, в). В этом случае продукты ПЦР отсутствуют, если в гибриде во внутреннюю часть праймера попадает любой некомплементарный мутантный нуклеотид матричной ДНК вне зависимости от его точной локализации. Такие праймеры позволяют обнаруживать любые точковые мутации в гомозиготном состоянии и у гаплоидных микроорганизмов. [c.216]

    Впервые Alu-последовательности были выделены и клонированы (случайным образом) из ДНК человека (рис. 9.41), и исходя из этих данных была построена каноническая последовательность. Затем клонированные члены Alu-семейства использовали в качестве зондов для определения числа копий методом кинетики реассоциации. Было обнаружено 9 10 копий Alu-последовательностей на гаплоидный геном (или около 9% геномной ДНК человека). В среднем на каждые 5 т.п.н. генома человека и других приматов Старого Света приходится одна Alu-последовательность. С Alu-зондами гибридизуется ДНК более 90% рекомбинантных фагов, содержащих хромосомную ДНК человека, а больщинство из клонированных сегментов длиной 15-20 т.п.н. содержит более одного члена Alu-семейства. Соседние Alu-последовательности могут располагаться друг относительно друга в любой ориентации, поэтому некоторые из них входят во фракцию схлоп-нувщейся геномной ДНК. Например, из восьми Alu-последовательностей в пределах сегмента ДНК длиной 65 т.п.н, которые входят в состав мультигенного семейства генов -глобина, пять ориентированы в одном направлении, а три-в другом (рис. 9.42). [c.202]


Смотреть страницы где упоминается термин Геном гаплоидный человека: [c.39]    [c.95]    [c.107]    [c.495]    [c.162]    [c.247]    [c.70]    [c.143]    [c.70]    [c.200]    [c.311]   
Биохимия человека Т.2 (1993) -- [ c.67 , c.68 , c.69 , c.70 ]

Биохимия человека Том 2 (1993) -- [ c.67 , c.68 , c.69 , c.70 ]




ПОИСК







© 2025 chem21.info Реклама на сайте