Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Картирование больших геномов

    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]


    С самого начала своего существования HGP должна была решать этические, правовые и социальные проблемы, связанные с картированием и секвенированием генома человека, вырабатывать стратегию, тактику и разрабатывать законопроекты, гарантирующие ответственное использование информации по генетике человека. На самом деле HGP не ставит каких-либо принципиально новых этических, правовых или социальных вопросов, которые не возникали бы при проведении медико-генетических исследований в целом. Однако реализация HGP неизбежно приведет к идентификации большого числа генов различных заболеваний и к определению последовательности многих из них, и эта [c.478]

    Ответ на этот вопрос можно получить, выделив большое число независимых мутаций в одном гене. Это означает, что каждый полученный мутант возник в результате отдельного мутационного события. Затем определяют сайт каждой мутации (обычно методом генетического картирования, но теперь часто и прямым анализом последовательности ДНК). Большинство мутаций распределяется по разным сайтам, но некоторые попадают в один и тот же сайт. Две независимо отобранные мутации могут возникнуть в результате одинаковых или различных изменений. В первом случае одно и то же мутационное [c.39]

    Рис. 20.4. при гибридизации РНК с прерывистым геном при картировании К-петель промежуточная последовательность гибридизоваться не может и остается в виде двухцепочечной ДНК. Она имеет вид двухцепочечной петли большей толщины, выступающей из области РНК—ДНК-гибрида. Последовательности ДНК, замененные на РНК, образуют одноцепочечные петли, соответствующие отдельным участкам, кодирующим РНК. [c.248]

    Степень разрешения, достигаемая при картировании, определяется используемыми методами. Наиболее современные методы окрашивания позволяли выявить до 1000 полос на всех 23 хромосомах человека. В среднем на хромосому при этом приходится 50 полос, хотя на некоторых хромосомах их можно обнаружить в несколько раз больше, чем на других (сравни хромосомы 1 и 22 в табл. 18.9). Гаплоидный геном человека состоит из 3 10 п.н. Каждая полоса содержит 3-10 п.н., что соответствует нескольким сотням генов. Таким образом, пределом разрешения картирования с привлечением цитогенетических методов являются расстояния, соответствующие сотням генов. [c.316]

    Описанная в гл. 18 методика картирования генов применялась к различным видам млекопитающих. У мыши картировано около 550 генов, больше чем у человека для шимпанзе установлена локализация 37 генов, для гориллы-38, для орангутана - 26. Картирование генов способствует выявлению гомологии между хромосомами и соответственно установлению различий в хромосомных наборах, накопившихся в процессе эволюции. [c.57]


    Эти ДИ РНК, которые далее были проанализированы, имели ту же полярность, что и вирусные сегменты РНК, и в отличие от большинства ДИ РНК несегментированного минус-цепочечного вируса, вируса везикулярного стоматита, не имели комплементарных концов. Методами гибридизации, олигонуклеотидного картирования и секвенирования РНК 5 - и З -концов было показано, что все изученные до настоящего времени 16 ДИ РНК имеют природу гена полимеразы (РВ1, РВ2, РА) [21, 23, 24, 44] и несут оба 5 - и З -геномных конца [23, 51]. Олигонуклеотидное картирование показало, что различные по размеру ДИ РНК могут быть генерированы из одного гена полимеразы и что последовательности меньших ДИ РНК не всегда являются составляющими больших ДИ РНК. Поэтому было высказано предположение, что по крайней мере некоторые ДИ РНК образуются из внутренних делеций гена полимеразы с сохранением обоих концов [23], Однако эти эксперименты [c.251]

    Полиморфизм ДНК и картирование. В последние годы выявляется все больше случаев полиморфизма ДНК по сайтам рестрикции (разд. 2.3.2.7, 6.1.2). Это обстоятельство раскрыло новые дополнительные возможности картирования генома человека. Установление тесного сцепления с рестрикционным маркером ДНК позволило локализовать гены многих важных наследственных болезней в конкретных хромосомных сегментах. На рис. 3.24, А представлена большая родословная с хореей Гентингтона. ДНК-маркер и, следовательно, ген хореи расположены на хромосоме 4. Модельные расчеты [584 754 887] показали, что для картирования всего генома необходимо лишь несколько сотен рестрикционных маркеров ДНК, случайным образом распределенных по геному человека. Для целей медико-генетического консультирования и пренатальной диагностики (разд. 9.1) достаточен по крайней мере один маркер, тесно сцепленный с геном данного наследственного заболевания. [c.202]

    Полиморфизм ДНК в области глобиновых генов. [972 1253]. При картировании генов у-5-р-кластера с помощью рестрикционного анализа была обнаружена значительная вариабельность последовательности ДНК у различных индивидов (рис. 4.40). Все известные варианты Р-глобинового комплекса генов возникли в результате одиночных нуклеотидных замен и обозначаются как присутствующие ( + ) или отсутствующие ( —). Среди 17 полиморфных сайтов в Р-кластере 12 локализованы во фланкирующих последовательностях, 3 внутри интронов, 1 внутри псевдогена и только 1 внутри кодирующей части гена р-глобина (синонимическая замена). Такое расположение закономерно, поскольку мутации в кодирующих областях скорее могут вызвать нежелательные эффекты. Большая часть ДНК, расположенной между структурными генами, не экспрессируется, поэтому изменения нуклеотидной последовательности в этих районах обычно не имеют функциональных последствий. Различные полиморф- [c.79]

    Описаны методы трансфекции эукариотических клеток рестрикционное картирование технология больших молекул ДНК выявление единичных замен нуклеотидов в ДНК проведение полимеразной цепной реакции получения ДНК генная дактилоскопия. [c.4]

    Недостаток больших родословных для рецессивно наследуемых признаков, конечно, ограничивает применение метода геномной дактилоскопии, но не исключает полезность его использования для анализа рецессивных болезней. Если в родословной имеются близкородственные браки, возможно также картирование по гомозиготности [27]. Суть этого метода в следующем если оба родственных индивида несут редкий рецессивный ген то вероятнее всего они унаследовали его от единого предка [28]. Если индивиды находятся в достаточно далеком родстве, то общие для них последовательности будут составлять лишь малую долю генома. К тому же поскольку аллельные частоты фрагментов, образующих полосы в отпечатках (особенно боль-. ших фрагментов), очень малы, то маловероятно, что в геноме родственников эти фрагменты совпадут, если они произошли от разных предков. Если при близкородственном скрещивании больные дети имеют общую для их геномных отпечатков полосу в удвоенном количестве, а здоровые дети наследуют одинарную дозу или вовсе не имеют этой полосы, то тем самым подтверждается гипотеза о физическом сцеплении между участком, ответственным за признак, и данной полосой. Условившись об аллелизме, можно подсчитать шансы на сцепление, но, как уже отмечалось, для подтверждения или опровержения наличия сцепления фрагмент необходимо клонировать. [c.206]

    Таким образом, при картировании генов в группах сцепления на основе изучения частот рекомбинации необходимо учитывать две противоположные тенденции. Двойные обмены сокращают расстояния между генами, а интерференция препятствует множественным обменам, вероятность которых увеличивается с расстоянием. Как показал для дрозофилы Г. Меллер, на больших расстояниях (около 35 % рекомбинации) интерференция исчезает. [c.103]

    Современные ВАС-векторы позволяют клонировать фрагменты ДНК длиной до 300 т.п.о. и выше. Рекомбинантные молекулы вводятся в клетки Е. соИ с помощью электропорации (см. раздел 3.8), причем эффективность образования трансформантов в 10-100 раз выше, чем при обычной трансформации сферопластов дрожжей векторами семейства YA . Это позволяет уменьшить исходное количество ДНК, необходимое для конструирования репрезентативных клонотек генов (см. гл. 4). При скрининге таких клонотек используются традиционные методы работы с бактериальными колониями. В отличие от Y АС-ДНК, которая находится в клетках дрожжей в линейной форме, ВАС-векторы со вставками, как и традиционные F -факторы, существуют в бактериальных клетках в виде кольцевых суперскрученных молекул. Это облегчает их выделение и последующую работу с рекомбинантными молекулами ДНК в растворе, а кроме того, допускает повторное введение в бактериальные клетки этих ДНК, выделенных мини-препаративными методами. Поскольку рекомбинантные ВАС-векторы существуют в бактериальных клетках в виде одной копии, исключаются совместное клонирование в одной клетке разных фрагментов ДНК и образование химерных молекул, что очень важно для физического картирования больших геномов методами снизу вверх . Весьма существенным свойством системы клонирования, основанной на векторах семейства ВАС, является ее генетическая стабильность. Исходная структура клонированных фрагментов ДНК в пределах точности использованных методов сохраняется в таких векторах даже после 100 серийных пересевов бактериальных клеток, содержащих рекомбинантные молекулы ДНК. Все вышеперечисленные свойства переводят векторы ВАС в разряд сверхъемких векторов нового поколения. [c.94]


    Суммарная длина нуклеотидных последовательностей генома человека соответствует 3 миллиардам. По данным разных авторов, такая гигантская нуклеотидная последовательность может содержать от 50 до 100 тыс. генов. В настоящее время известна структура около 7 тыс. генов. Изучение структуры генов - не конечная цель программы. Помимо анализа последовательности нуклеотидов, проводится их картирование. Каждый ген приписывается к определенной хромосоме в строго определенное место — локус, устанавливается расстояние между генами, составляется карта хромосом человека. В настоящее время картированы около 8 тыс. генов. Увеличению скорости картирования генов на хромосомах способствует выявление маркерных последовательностей для каждой хромосомы. Эти маркерные последовательности много раз повторяются вдоль хро.мосомы и как бы делят ее на офа-ниченные участки. Работа с таким не-больши.м участком хромосомы облегчает процедуру выделения гена. Благодаря существованию маркерных последовательностей, геном человека разбит на отдельные фрагменты, и каждый фрагмент в случае необходимости может быть легко размножен вне организма. [c.72]

    Для того чтобы тонкое генетическое картирование можно было осуществить на практике, необходим еще один метод. Была составлена генетическая карта для ряда мутантных бактериофагов с делециями, захватывающими большие участки гена г11. С помощью этих мутантов можно было легко определить, в каком именно участке гена соответствующего мутанта находится данная мутация. Последующие эксперименты по рекомбинации с использованием предварительно идентифицированных мутаций позволяют уточнить локализацию мутации в ранее исследованном участке гена. Таким способом Бензеру удалось идентифицировать более 300 мутаций в гене гИ. Он пришел к выводу, что минимальное расстояние между двумя мутантными участками полностью согласуется со строением гена, предложенным Уотсоном и Криком. [c.250]

    Триптофансинтетаза (стр. 141) состоит из двух субъединиц А и В (или а и ), первая из которых содержит всего лишь 268 аминокислот. Тонкую структуру гена А удалось картировать следующим образом. Было выделено большое число мутантных бактерий, неспособных расти на среде, не содержаш,ей триптофана (ауксотрофы по триптофану). Генетические скрещивания проводились с помощью специального трансдуцирующего бактериофага Pike [134]. В процессе размножения в чувствительных к ним бактериях трансдуцирующие бактериофаги иногда включают в собственную ДНК часть бактериальной хромосомы. В дальнейшем, когда такой фаг заражает другие бактерии, часть его генетической информации может переноситься в результате рекомбинации 3 хромосомы бактерий, переживших инфекцию. Используя серии мутантов с делециями аналогично тому, как это было сделано при картировании гена гЛ, удалось разделить ген А на ряд участков, а исследование частоты рекомбинаций позволило осуществить точное картирование. [c.251]

    Векторные системы, способные интегрировать крупные вставки (>100 т. п. н.), имеют большую ценность при анализе сложных эукариотических геномов. Без таких векторов не обойтись, например, при картировании генома человека или при идентификации отдельных генов. В отличие от библиотек с небольшими вставками, в геномной библиотеке с крупными вставками скорее всего будет представлен весь генетический материал организма. Кроме того, в этом случае уменьшается число клонов, которые нужно поддерживать, и увеличивается вероятность того, что каждый из генов будет присутствовать в своем клоне. Для клонирования фрагментов ДНК размером от 100 до 300 т. п. н. был сконструирован низкокопийный плазмидный вектор на основе бактериофага Р1 — химерная конструкция, называемая искусственной хромосомой на основе фага Р1. Был создан также очень стабильный вектор, способный интегрировать вставки длиной от 150 до 300 т. п. н., на основе Р-плазмиды (F-фактора, или фактора фертильности) Е. соИ, которая представлена в клетке одной или двумя копиями, с селекционной системой la Z векторов pU . Эта конструк- [c.76]

    Искусственные дрожжевые хромосомы (YA ) предназначены для клонирования больших фрагментов ДНК (100 т. п. н.), которые затем поддерживаются в дрожжевой клетке как отдельные хромосомы. УАС-система чрезвычайно стабильна. С ее помощью проводили физическое картирование геномной ДНК человека и анализ больших транскриптонов, создавали геномные библиотеки, содержащие ДНК индивидуальных хромосом человека. YA -вектор напоминает хромосому, поскольку он содержит последовательность, функционирующую как сайт инициации репликации ДНК (автономно реплицирующуюся последовательность), сегмент центромерной области дрожжевой хромосомы и последовательности, образующиеся на обоих концах при линеаризации ДНК и действующие как теломеры, обеспечивающие стабильность хромосомы (рис. 7.3). При встраивании чужеродной ДНК в YA может происходить нарушение рамки считывания маркерного дрожжевого гена. В результате продукт этого гена не образуется, и при выращивании клеток на специальной среде можно наблюдать цветную реакцию. Кроме того, некоторые YA -векгоры несут селективный маркер, независимый от сайта клонирования. Несмотря на все преимущества, YA пока не использовались для промышленного синтеза гетерологичных белков. [c.137]

Рис. 20.8. Картирование Х-хромосомы. В этом случае генетическая фаза двух или большего числа Х-сцеп-ленных локусов у дочери (Мать) устанавливается на основании данных о Х-сцепленных аллелях ее отца (Дед). Эту информацию в свою очередь используют для определения, какие из ее сыновей (Сыновья) получили рекомбинантную (К) и нерекомбинантную (NR) хромосому. В данном примере дед несет два рецессивных гена в локусах А и В Х-хромосомы, его дочь дигетерозиготна, а рассматриваемые аллели находятся у нее в цис-фазе. На Х-хромосоме показаны аллели локусов А и В, V-хромосома изображена в виде более короткой полоски. Рис. 20.8. Картирование Х-хромосомы. В этом случае генетическая фаза <a href="/info/1696521">двух</a> или <a href="/info/831964">большего числа</a> Х-сцеп-ленных локусов у дочери (Мать) устанавливается на основании данных о Х-сцепленных аллелях ее отца (Дед). Эту информацию в свою очередь используют для определения, какие из ее сыновей (Сыновья) получили рекомбинантную (К) и нерекомбинантную (NR) хромосому. В данном примере дед несет два <a href="/info/1279849">рецессивных гена</a> в локусах А и В Х-хромосомы, его дочь дигетерозиготна, а рассматриваемые аллели находятся у нее в цис-фазе. На Х-хромосоме показаны <a href="/info/1394748">аллели локусов</a> А и В, V-хромосома изображена в виде более короткой полоски.
    Хотя этот подход не очень эффективен при картировании генов человека, в ряде случаев он может оказаться весьма полезным. Суть метода состоит в следующем. Анализирчтот симптомы генетического заболевания и на их основе пытаются понять, какого типа белок может быть с ним ассоциирован. Затем просматривают нуклеотидные последовательности всех клонированных на настоящий момент генов и выбирают ген(ы)-кандидат(ы). Основываясь на нуклеотидной последовательности гена-кандидата, вырабатывают стратегию поиска мутаций и с ее помошью пытаются установить, является ли ген-кандидат искомым геном (рис. 20.24). Принимая во внимание, что геном человека содержит очень большое число генов, а охарактеризованы лишь некоторые из них, не стоит удивляться, что правильный выбор гена случается не так уж часто. Но ценен и отрицательный результат, поскольку он позволяет исключить данный ген из числа ответственных за конкретное генетическое заболевание. [c.469]

    Реализация любого проекта по позиционному картированию гена занимает много времени. За период с 1986 по 1995 г. с помощью данного подхода удалось обнаружить более 50 генов различных заболеваний человека, что можно считать большим достижением. Иногда поиск гена занимает 1-2 года, в то же время для обнаружения гена хореи Гентингтона консорциуму из нескольких исследовательских лабораторий потребовалось 10 лет. Отметим, что с клонированием все новых и новых генов и построением транскрипционных карт с высоким разрешением позиционное картирование постепенно уступает место позиционно-кандидатному. [c.476]

    Даже у прокариот информация, получаемая от вну-тригенного картирования, ограничена природой рекомбинационного акта. На уровне внутригенного картирования частота рекомбинации частично зависит от природы мутаций, использованных в скрещивании, и может в большой степени определяться последовательностью ДНК в данном участке. Другими словами, здесь вместо идеального свойства независимости аллелей, которое мы обсуждали в гл. 1, проявляется эффект специфичности аллелей. Поэтому наши представления о гене с позиций генетической карты искажаются особенностями рекомбинационных систем. [c.43]

    Часто при гибридизации к меченому зонду добавляют большой избыток (тысячекратный) немеченой конкурирующей ДНК (табл. 18.5). Этот прием уменьшает неспецифическое связывание зонда. В рассматриваемом примере в отсутствие конкурирующей ДНК (второй ряд табл. 18.5) в большей части клеток гибридизация с фрагментом 14,9 т.п.н. происходит в области 1р36, однако значительная часть черных точек на автографе, означающих гибридизацию, оказывается распределена и по многим другим хромосомным локусам. В этом случае могут выявляться последовательности человеческой ДНК, гибридизуюгциеся с зондом менее специфично. В таблице 18,6 приведены гены человека, картированные с помощью гибридизации in situ. [c.315]

    Появившиеся в последнее время методы позволяют составлять подробные карты очень больших геномов. Есть две категории карт 1. Физические карты, основывающиеся на строении молекул ДНК, составляющих каждую хромосому. Сюда относятся рестрикционные карты и систематизированные библиотеки клонов геномной ДНК. 2. Карты генетического сцепления их строят, основываясь на частоте совместной передачи потомству двух или нескольких признаков - генетических маркеров, различных у отца и матери и приписываемых определенному участку хромосомы. В качестве маркеров издавна принято использовать те гены, экспрессия которых обнаруживается по их эффекту (таковы, в частности, гены, вызывающие генетические болезни, например мышечную дистрофию). Разработанные сравнительно недавно новые методы с применением рекомбинантной ДНК дали возможность использовать в качестве генетических маркеров короткие последовательности ДНК, содержащие один из сайтов рестрикции и различающиеся у отдельных индивидуумов, такие последовательности особенно удобны для генетического картирования, потому что под действием рестрикционной нуклеазы возникают фрагменты, различающиеся по своей длине, и этот полиморфизм длины рестрикционных фрагментов (ПДРФ) легко может быть выявлен блот-анализом по Саузерну с помощью подходящего ДНК-зонда (рис. 5-90). [c.342]

    Космидные векторы — плазмиды, несущие os-последователь-ности, распознаваемые компонентами системы упаковки фага X [1], представляют собой удобный инструмент для клонирования и анализа больших фрагментов геномов, картирования хромосом и клонирования генов, размер которых превышает 20 т. п. н. Хотя в настоящее время разработаны приемы, позволяющие конструировать космидные клоны и оперировать с космидными библиотеками, все же неизбел но возникают трудности при получении и анализе больших библиотек, необходимых для клонирования генома млекопитающих в частности, вызывает затруднение введение специфических модификаций во вставки в тех случаях, когда их нельзя прямо увязать с характеристиками рестрикционной карты. Эти трудности могут быть весьма существенными. Во многих случаях для их преодоления используются методы генетики бактерий, позволяющие упростить илп облегчить решение этих задач. [c.74]

    Другой, по-видимому чаще используемый, подход основывается на количественном исследовании ферментативной активности в случаях с хромосомными аномалиями. Большинство ферментов характеризуются четко различимым эффектом дозы гена, т.е. гетерозиготы по ферментативной недостаточности обнаруживают примерно 50%-ную ферментативную активность. Сходный эффект дозы гена можно ожидать и в том случае, когда ген теряется вследствие делеции. Такой подход к картированию использовался для большого числа генетических маркеров. Чаще всего результат оказывался отрицательным, но такого рода исключающее картирование полезно тем, что может сузить область вероятной локализации генов-маркеров. Следует, правда, учесть, что на основе этого подхода были сделаны и неправильные выводы, поскольку наличие молчащего (нулевого) аллеля, т.е. непроявляющейся мутации, может имитировать эффект делеции. [c.199]

    Как индуцировать мутации в фаге К гидроксиламином in vitro указано в методике 8. Это весьма обычный метод мутаге-низирования как фага, так и выделенной в очищенном виде ДНК. Его преимущество заключается в высокой специфичности (индуцируются транзиции G—>-А) и большой эффективности. При работе с умеренным фагом контролировать эффективность мутагенеза очень просто — достаточно следить за появлением среди выжившего фага мутаций, приводящих к образованию прозрачных бляшек. По этой методике можно выделить амбер-мутантов фага К. С помощью спот-теста на комплементацию (методика 10) их можно охарактеризовать по их комплементации с амбер-мутациями в большинстве известных генов фага Л. Комплементационный анализ позволит определить положение полученных мутаций на карте. Мутации по ТЕМ-р-лактамазе можно использовать для картирования делеционных мутантов в этой модели клонированного фрагмента (эксперимент 6). [c.36]

    Через 48 ч должен вырасти штрих на чашке, инкубируемой при 30°С. На той чашке, которая инкубировалась при 40°С, на месте штриха должно быть лишь несколько больших колоний. Это и есть искомые Hfr-клетки. Они являются La ft при той температуре (40°С), при которой невозможна автономная репликация эписомы F 1ас+. Как предполагается, гены 1ас+ эписомы F, встроившись в хромосому, перестали быть чувствительными к температуре. Уколом отберите несколько таких предположительных Hfr-клеток и вырастите их культуры в жидкой селективной среде (N E + 0,5% лактозы) при 40°С. Также посейте в LB (при 37°С) культуры ряда реципиентов, которые будут использоваться для картирования. Это единичные ауксотрофы, каждый из которых несет также мутацию устойчивости к стрептомицину. Нужно немного таких штаммов. Поэтому можно рискнуть и приготовить один набор реципиентных культур сразу на несколько групп. Чтобы сэкономить чашки, можно и контрольные чашки с реципиентами приготовить сразу на несколько групп. [c.55]

    Как, должно быть, уже заметил читатель, оптимальный подход к изучению сцепления зависит в некоторой степени от точного знания природы генетических трудностей, которые предстоит преодолеть (к примеру, количество различных локусов, ответственных за гетерогенное нарушение уровень фено-копийности). Однако не часто такие подробности можно с точностью заранее определить. Следует начинать изучение сцепления с выявления на основе имеющихся данных спектра возможных осложнений. Далее следует определить доступный популяционный материал (включая большие родословные, изолированные популяции, детей от близкородственных браков) и арсенал медицинских методов (включая клинические методы дифференциации фенотипов), который можно использовать для упрощения задачи. Затем, основываясь на допущениях, принятых для различных типов наследования, следует вычислить количество различных семей, необходимое для картирования признака. В конечном счете проводится подбор семей, готовятся препараты ДНК. которые анализируют по большому количеству ПДРФ. Если предположения о генетической этиологии заболевания верны, то вероятность обнаружения сцепления велика. Если же признак в действительности более сложен, чем это предполагалось, сцепление не будет обнаружено. Отрицательный ответ при поиске по всему геному докажет по крайней мере, что заболевание более сложно, чем исходно предполагалось. [c.237]

    На самом деле ни о каких гибридных растительно-микробных белках речь не идет вообще. При трансгенозе у растений в случае, когда трансген встраивается в область, кодирующую какой-либо ген (такая вероятность есть, но не слишком большая в генетическом материале растений собственно генами занято менее 10% всей длины молекулы ДНК), происходит выключение этого гена. Вместо него работают и дают начало синтезу определенных белков, которых они кодируют, только гены, входящие во встроенную генетическую конструкцию. У них в отличие от поврежденного гена имеются все необходимые для их функционирования регуляторные элементы. Это явление (встройки трансгенов в области ДНК, кодирующие какие-либо гены) получило название инсерционного мутагенеза. Оно широко используется в генетических исследованиях для картирования генов — определения места гена на хромосоме относительно других известных генов. [c.94]

    Несомненным достижением в работе С. Бензера была разработка метода перекрывающихся делеций для внутригенного картирования, благодаря которому стало возможным насыщать генетическую карту мутациями. Он впервые перевел величины, измеряемые в генетическом анализе, в молекулярную размерность сопоставил их с мономерами молекулы ДНК. Итогом этой работы было разрешение кажущихся противоречий между критериями аллелизма. Стала очевидной их относительность, особенно в отношении рекомбинационного критерия аллелизма. Функциональный же критерий аллелизма сохраняет свою ценность с учетом возможности межаллельной комплементации (см. гл. 2), т. е. он также относителен и в строгом смысле должен применяться на достаточно большом статистическом материале. В дальнейшем будет показано, что относительность функционального критерия аллелизма выражается не только в случае комплементарности аллельных мутаций, но и в случае некомплементар-ности мутаций разных генов в оперонах (см. гл. 16). Таким образом, от моргановских представлений об однозначном соответствии результатов разных тестов (рекомбинационного и функционального) на аллелизм мы приходим к пониманию их относительности и необходимости комплексного применения. [c.380]


Смотреть страницы где упоминается термин Картирование больших геномов: [c.314]    [c.89]    [c.460]    [c.468]    [c.470]    [c.477]    [c.480]    [c.989]    [c.104]    [c.18]    [c.199]    [c.133]    [c.247]    [c.155]    [c.92]    [c.32]    [c.32]   
Смотреть главы в:

Гены и геномы Т 2 -> Картирование больших геномов




ПОИСК







© 2025 chem21.info Реклама на сайте