Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция выражения генов

Фиг. 170. Регуляция выражения генов. Фиг. 170. Регуляция выражения генов.

    И наконец, необходимо поставить ряд вопросов относительно регуляции выражения генов. Каковы первичные внешние сигналы , провоцирующие ту или иную биохимическую адаптацию. Как происходит включение и выключение генов в ответ на изменение окружающей среды Обладают ли организмы, проявляющие широкую толерантность к изменениям среды, наиболее сложными системами регулирования транскрипции Как быстро возникают такие системы в процессе эволюции  [c.379]

    ГЛАВА 28 Регуляция выражения гена в фенотипе [c.112]

    Таким образом, можно заключить, что в основе клеточной дифференцировки лежит пе постоянное изменение состава генома клеток, а различное выражение мириад генов, содержащихся в геноме. Это означает, что механизмы эмбрионального развития следует объяснить, исходя из представлений о регуляции работы генов, подобных описанным в гл. XX для прокариотов. С одним примером такого дифференцированного выражения генов в развитии мы уже сталкивались в начале этой главы в случае тысячекратной репликации ДНК ядрышкового организатора в ооцитах амфибий. Следует отметить, что подобный способ регуляции, основанный на факультативной репликации отдельных генов с целью увеличить матричную емкость этих генов в транскрипции, не встречается у прокариотов (и поэтому мы его не обсуждали в гл. XX). [c.513]

    Понятие ферментная система находит свое выражение также на уровне генетического аппарата клетки. Согласно современным представлениям специфическая структура каждого белка-фермента определяется (детерминируется) отдельным геном, т. е. специфической молекулярной структурой ДНК в соответствующем участке хромосомы. В настоящее время существует стройная система представлений о механизме регуляции синтеза ферментов в клетках, созданная на основании изучения явлений индукции и репрессии и представлений о механизме белкового синтеза. [c.159]

    Мы можем отличить структурные гены от регуляторных по эффекту мутаций. Мутация в структурном гене ведет к отсутствию в клетке определенного белка, кодируемого этим геном. Мутация же в регуляторном гене влияет на выражение всех структурных генов, которые он контролирует. Природа такого влияния зависит от типа регуляции. [c.178]

    Выражение /ас-генов контролируется по типу негативной регуляции. Из этого следует, что гены транскрибируются при условии, что они не выключены регуляторным белком. Следовательно, при мутации, инактивирующей репрессор, гены остаются в активном состоянии. Поскольку функция регулятора сводится к предотвращению выражения структурных генов, он был назван бел-ком-репрессором. [c.178]


    Общим свойством всех оперонов, указанных в табл. 15.1, является аутогенная регуляция некоторых из генов одним из продуктов. Обычно регуляторный белок подавляет выражение ряда смежных генов в пределах оперона и в том числе (всегда) выражение своего собственного гена. [c.202]

    Использование такого последовательного контроля с регуляторным геном в каждом ряду, необходимым для выражения следующего ряда генов, создает каскад, в котором группы генов включаются (или иногда выключаются) в определенное время. Каскадная регуляция у различных фагов может различаться в деталях, однако во всех случаях она приводит к одинаковому результату, как это будет видно из следующих разделов. [c.208]

    Так же как и в случае трансляции мРНК, регуляция выражения генов включает ряд взаимодействий между нуклеиновыми кислотами и белками, определяемых слабыми связями. Поэтому весьма вероятно, что температура может существенно влиять на выражение генов. И здесь, подобно тому как мы это видели во многих других случаях термических эффектов в системах, стабилизируемых слабыми связями, возникает потенциальная возможность пользы и вреда . Мы сначала кратко рассмотрим ряд примеров, относящихся к бактериям, у которых регуляция активности генов, как известно, подвержена влиянию температуры, [c.227]

    В случае индукции и репрессии исследователь имеет дело с так называемой негативной регуляцией выражения генов. Существует также механизм позитивной регуляции — активация действия генов, которая осуществляется с помощью аллостери-ческих регуляторных белков. Наиболее известные и хорошо изученные примеры такого рода регуляции — это регуляция катаболизма арабинозы и синтеза щелочной фосфатазы у Е. соИ. [c.19]

    В геноме такого простого эукариота, как плесневый гриб Di tyoste-Иит, содержится в 11 раз больше ДНК, чем в геноме Е. соИ. У дрозофилы— высшего организма с наименьшим количеством ДНК—размер гаплоидного генома в 24 раза больше размера генома Е. соИ. Кодирующая емкость генома человека в 600 раз больше, чем у бактерии (табл. 1-3). Столь большое количество ДНК является одной из причин, затрудняющих изучение эукариотического генома. Другая трудность обусловлена тем, что процесс транскрипции генов у эукариот может сильно изменяться как во времени, так и в зависимости от условий окружающей среды. Следовательно, механизмы регуляции фенотипического выражения генов должны быть очень сложными. [c.296]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]

    РЕГУЛЯТОРНЫЕ БЕЛКИ (от лат. regulo-привожу в порядок, налаживаю), группа белков, участвующих в регуляции разл. биохим. процессов. Важная группа Р. б., к-рым посвящена эта статья,-белки, взаимодействующие с ДНК и управляющие экспрессией генов (выражение гена в признаках и св-вах организма). Подавляющее большинство таких Р. б. функционирует на уровне транскрипции (синтез матричных РНК, или мРНК, на ДНК-матрице) и отвечает за активацию или репрессию (подавление) синтеза мРНК (соотв. белки-активаторы и белки-репрессоры). [c.217]

    Мы привели эти примеры для иллюстрации возможных отрицательных и положительных сторон влияния температуры на регуляцию генной активности. С одной стороны, легко видеть, как изменение температуры может подавлять нормальные регуляторные реакции, участвующие в механизмах контроля выражения генов например, оно может препятствовать включению или выключению определенного гена. С другой стороны, однако, создается возможность прямой температурной активации генов, кодирующих именно те белки или РНК, которые нужны при изменивщейся температуре. Например, если в новых температурных условиях необходимы новые классы ферментов, то соответствующие структурные гены могли бы активироваться в результате прямого термического воздействия. [c.228]

    Способность /ас/ -мутантов к конститутивному выражению генов согласуется с поведением системы негативной регуляции. Ген lad кодирует белок-репрессор, способный выключать транскрипцию группы генов la ZYA. Мутация гена, приводящая к lad ", позволяет генам экспрессироваться конститутивно, поскольку репрессор становится неактивным. [c.179]


    Накопление, передача и экспрессия (выражение в фенотипе) генетической информации составляют основную тему части IV. В начале описьгоаются эксперименты, показывающие, что ДНК является генетическим материалом, а также история открытия двойной спирали ДНК. Затем следует описание ферментативного механизма репликации ДНК. Далее мы перейдем к экспрессии генетической информации, заключенной в ДНК, начав с описания данных о роли информационной РНК как промежуточного переносчика информации. Затем рассматривается процесс транскрипции, т. е. синтез РНК в соответствии с инструкциями, заключенными в матричной ДНК. Из этого логически вытекает описание генетического кода, т.е. взаимосвязи между последовательностью оснований в ДНК (или в транскрибируемой с нее информационной РНК) и последовательностью аминокислот в соответствующем белке. Генетический код, общий для всех живых организмов, прекрасен своей простотой. Три основания составляют кодон-единицу кода, соответствующую одной аминокислоте. Кодоны в информационной РНК последовательно считываются молекулами транспортных РНК, которые выполняют роль адапторов в син-тезе белка. Далее мы переходим к механизму белкового синтеза, а именно к процессу трансляции, в ходе которого четырехбуквенный алфавит нуклеиновых кислот, в котором каждая буква представлена соответствующей парой оснований, переводится в 20-буквенный алфавит белков. Трансляция происходит на рибосомах и обеспечивается координированным взаимодействием более чем сотни различных высокомолекулярных соединений. В следующей главе описывается регуляция экспрессии генов у бактерий, причем основное внимание уделяется оперо-нам лактозы и триптофана у Е. соН, как наиболее изученным в настоящее время. Далее обсуждаются результаты последних исследований экспрессии генов у более высокоорганизованных организмов (т.е. у эукариот), отличающихся от бактерий (прокариот) более высоким содержанием ДНК и наличием оформленного ядра, что обеспечивает диф-ференцировку клеток. Затем рассматри- [c.15]

    КИМ образом дальнейшее выражение генов фага X. Белок N включает раннюю стадию. В это время синтезируются белки, необходимые для репликации ДНК фага и рекомбинации. Кроме того, наранней стадии транскрибируется ген Q. Белок Q - еще один важный регуляторный элемент выражения генов фага X. Он необходим для перехода в позднюю стадию. На поздней стадии транскрибируются гены, необходимые для образования головки и отростка фага и для лизиса клетки-хозяина. Белок Q, подобно белку N, подавляет терминацию транскрипции. Короче говоря, последовательная регуляция литического развития осуществляется двумя белками - положительными регуляторами, кодируемыми генами N и Q. Их действие заключается в том, что они позволяют РНК-полимеразе продолжать транскрипцию, проскочив несколько участков терминации. [c.122]

    Кл о н ир о ван ие ре ком б ина нтн о й Д Н к у же внесло больщой вклад в нащи представления о структуре хромосомы и выражении гена. Многие встроенные гены удалось размножить путем клонирования, что дало больщие количества ДНК для определения последовательности оснований и электрон-но-микросконических исследований. Кроме того, с помощью этих клонов были синтезированы в больщих количествах белки, которые в обычных условиях образуются в ничтожных количествах. Методы рекомбинантных ДНК используются также для изучения сложных геномов и регуляции их выражения. [c.208]

    Регуляторные белки обладают и другими свойствами. Мы уже видели, что существуют позитивные регуляторы, которые названы так потому, что в их присутствии выражение структурных генов включается. В отсутствие регулятора гены не могут выражаться. Примером регуляции такого типа является инициирование транскрипции путем образования новых сигма-факторов (гл. 12) или специфическая антитерминация транскрипции (гл. 13). [c.178]

    Иногда создается впечатление, что для контроля выражения (экспрессии) гена в той или другой ситуации используется каждый из возможных мезанизмов. При всем разнообразии механизмов контроля их объединяет то общее, что регуляция во всех случаях осуществляется взаимодействием регуляторного белка с последовательностью нуклеиновой кислоты, часто имеющей двойную симметрию. В этой главе мы рассмотрим некоторые другие примеры взаимодействий такого рода с точки зрения их объединения в системы, контролирующие отдельные опероны. Часто контроль осуществляется при участии сходных механизмов, оперирующих слегка отличным способом, и способ установления связи между ними варьирует от случая к случаю. [c.188]

    Отсутствие активности связано (и, вероятно, обусловлено) с чрезвычайно высокой степенью конденсации генетического материала. Заметим, однако, что обратное утверждение было бы неверно. Хотя активные гены действительно находятся в неконденсированном эухромати-не, только незначительная часть входящих в него последовательностей когда-либо транскрибируется. Таким образом, необходимым условием экспрессии гена является его локализация в эухроматине, но одного этого недостаточно. Мы можем только гадать, используется ли тот же самый механизм, который вызывает резкие видимые различия между эу- и гетерохроматином, но только в меньшей степени для регуляции транскрипции в самом эухроматине. Иными словами, скрыты ли в структуре эухроматина менее выраженные участки с разной степенью конденсации, которые обусловливают различие между транскрибируемыми и нетранскрибируемыми районами. [c.350]

    Полиморфизм ДНК. Для экспрессируемых продуктов генов, таких, как группы крови, белки тканей и крови, характерен высокий уровень полиморфизма, однако генетическая изменчивость, наблюдаемая на уровне ДНК, существенно выще. Поскольку значительная часть генома, вероятно, не принимает прямого участия в регуляции или кодировании продуктов генов, мутации в этих нерегуляторных и некодирующих участках ДНК не имеют фенотипического выражения и являются селективно нейтральными. Определение последовательностей нуклеотидов у различных индивидов и использование рестрикционных ферментов для картирования генома человека выявило необыкновенно высокую изменчивость на [c.288]

    Число обнаруживаемых у бактерий белковых и низкомолекулярных факторов, влияющих на эффективность транскрипции различных генов, постоянно увеличивается. Выявлено участие в регуляции активности РНК-полимеразы белковых факторов трансляции, формилметионил-тРНК и гуанозинтетрафосфата, которые обеспечивают сопряжение процессов синтеза РНК и белка, активируя или подавляя выражение определенных генов. Кроме основного сигма-фактора найдены дополнительные сигма-субъединицы, способные переключать транскрипцию с одних групп генов на другие, очевидно, за счет изменения узнающих свойств РНК-полимеразы. [c.23]

    Одна из основных функций ффГфф состоит в регуляции транскрипции бактериального генома. Этот нуклеотид связывается с РНК-полимеразой и изменяет ее сродство к промоторам различных генов. В результате выражение одних генов уменьшается, а других — усиливается, соответственно строгий контроль выражения этих генов оказывается негативным или позитивным. [c.29]

    Обратимся теперь к роли репрессоров и активаторов транскрипции в регуляции жизненного цикла бактериофага лямбда (X). Зрелая вирусная частица состоит из линейной двухспиральпой молекулы ДНК (48 кЬ), упакованной в белковую оболочку. Существует два пути развития вируса он может разрушить клетку-хозяина или он может стать ее комнонентом (отсюда и название- умеренный). При литическом пути развития происходит полное выражение (экспрессия) фаговых генов, что приводит к лизису бактерии и образованию примерно 100 вирусных частиц потомства. В другом случае развитие фага X может пойти по пути лизогенизаиди клетки, когда его ДНК становится ковалентно связанной с ДНК клетки-хозяина в строго определенном месте (сайт-специфи-ческая интеграция). Этот процесс рекомбинации, в котором участвует кольцевая молекула ДНК фага мы обсудим ниже (разд. 30.16). Когда ДНК фага интегрирует с ДНК клетки-хозяина, большинство фаговых функций выключается. Фаговая ДНК в таком состоянии называется профагом, а клетка-хозяин, содержащая профаг-лг/зо-генной бактерией. Нрофаг реплицируется [c.120]


Смотреть страницы где упоминается термин Регуляция выражения генов: [c.183]    [c.112]    [c.302]    [c.486]    [c.179]    [c.493]    [c.200]    [c.166]    [c.35]   
Современные методы создания промышленных штаммов микроорганизмов (1988) -- [ c.19 , c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2025 chem21.info Реклама на сайте