Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

распределение Фишера среднее значение

    Дисперсионный анализ состоит в выделении и оценке отдельных факторов, вызывающих изменчивость изучаемой случайной величины. Для этого производится разложение суммарной выборочной дисперсии на составляющие, обусловленные независимыми факторами. Каждая из этих составляющих представляет собой оценку дисперсии генеральной совокупности. Чтобы решить, значимо ли влияние данного фактора, необходимо оценить значимость соответствующей выборочной дисперсии в сравнении с дисперсией воспроизводимости, обусловленной случайными факторами. Проверка значимости оценок дисперсий проводится по критерию Фишера (см. гл. II, 11). Если рассчитанное значение критерия Фишера окажется меньше табличного, то влияние рассматриваемого фактора нет оснований считать значимым. Если же рассчитанное значение критерия Фишера окажется больше табличного, то рассматриваемый фактор влияет на изменчивость средних. В дальнейшем будем полагать, что выполняются следующие допущения 1) случайные ошибки наблюдений имеют нормальное распределение 2) факторы влияют только на изменение средних значений, а дисперсия наблюдений остается постоянной эксперименты равноточны. [c.75]


    В табл. 52 приведены эффекты факторов, введенных в планирование на двух уровнях, полученные по формуле (У.133). Значимость этих эффектов проверялась по критерию Стьюдента. Табличное значение критерия Стьюдента /0,05(6)— 2,45. Эффект фактора Ха (соотношение реагирующих компонентов) оказался незначимым. Таким образом, избыток галоидного алкила не влияет на выход полимера. Незначимый эффект в табл. 52 заменен нулем. Значимость главных эффектов факторов, введенных в план как на двух, так и на четырех уровнях, проверялась при помощи многофакторного дисперсионного анализа. Для оценки значимости эффектов в дисперсионном анализе было использовано отношение средних квадратов, обусловленных действием соответствующих факторов, к среднему квадрату, связанному с ошибкой опыта, имеющее распределение Фишера. При этом к сумме квадратов, связанной с ошибкой опыта, отнесена с соответствующим числом степеней свободы сумма квадратов, обусловленная [c.223]

    Результатами расчета являются матрица преобразованных переменных средние значения, средние отклонения, среднеквадратичные отклонения, третьи моменты, коэффициенты асимметрии, аналоги эксцесса, корреляционные матрицы для исходных и преобразованных переменных и для математической модели и оценки коэффициентов и остаточные ошибки уравнения регрессии, критерии значимости коэффициентов (по Фишеру и Стьюденту), критерии Фишера для проверки информационной способности уравнения, критерии Смирнова — Груб-бса для автоматического отбрасывания грубых ошибок эксперимента или опечаток, остатки (отклонения результатов вычисления по уравнению от результатов наблюдений), критерий Мизеса для проверки нормального распределения остатков. [c.14]

    Теоретические и экспериментальные исследования показывают, что координационное число в жидкости является не числом в буквальном смысле, а своеобразной функцией плотности и температуры. Координационные числа имеют точные значения лишь в кристалле,где функция 4я/ р (7 ) дискретна. В жидкости они подвергаются флуктуациям. По теоретическим расчетам И. 3. Фишера, в жидких металлах флуктуация первого координационного числа 1 составляет 10%, а второго 2 — 30—40%. Столь высокие значения флуктуаций координационных чисел являются следствием трансляционного движения атомов наряду с колебательным. Наиболее вероятное число ближайших соседей в жидкости может не совпадать со средним его значением. Поэтому количественное описание распределения ближайших соседей должно быть отражено не средним координационным числом Пь а функцией распределения определяющей вероятность обнаружения раз- [c.56]


    Одно из наиболее частых применений распределения и, соответственно, критерия Фишера - проверка качества аппроксимации экспериментальных данных математическими формулами. Если проведены аппроксимации двумя различными формулами, например полиномами двух различных степеней, то предпочтительна, как более точная, аппроксимация, дающая значимо меньшую дисперсию, что и проверяется по критерию Фишера. Если различие незначимо, предпочтение не может быть отдано той или другой формуле. В частности, степень аппроксимирующего полинома целесообразно повышать только до тех пор, пока дисперсия значимо убывает. Следует иметь в виду, что наилучший аппроксимирующий полином может не содержать некоторых сте -пеней, поэтому необходимо продолжить анализ еще на несколько шагов после достижения ситуации, когда повышение степени полинома не приводит к зна -чимому уменьшению дисперсии. Необходимо помнить, что по мере повышения степени полинома, чисто степеней свободы убывает для вычисления коэффициента полинома нулевой степени, т.е. среднего значения, использовано одно уравнение, и число степеней свободы уменьшилось на единицу. После вычисления коэффициентов полинома первой степени число степеней свободы уменьшается на два и т.д. [c.235]

    Именно этот способ расчета был применен в работах И. 3. Фишера и В. К. Прохоренко 12] для расчета флюктуаций координационных чисел 21 и в первой и второй координационной сфере. Расчеты Фишера и Прохоренко показали, что, как и следовало ожидать, эти флюктуации очень велики Они составляют 20—30% и более от средних значений. Далее, была продемон стрирована тесная корреляция флюктуаций. Как и следовало ожидать из качественных соображений и хода радиальной функции распределения, эта корреляция отрицательна по знаку. Корреляция указывает на известную упорядоченность мелкоструктурных флюктуаций в жидкости. Иначе говоря, каждая жидкость характеризуется определенной флюктуацион-ной структурой, которая зависит от состава, температуры и давления. Несколько иной, но в принципе близкий метод расчета мелкоструктурных флюктуаций рассматривается М. А. Леонтовичем[3]. Пусть А есть некоторая функция координат в пространстве любого числа измерений. Область изменения координат О разбиваем на любое число частей, объемы которых равны VI, V2, Vn  [c.152]


Смотреть страницы где упоминается термин распределение Фишера среднее значение: [c.141]    [c.117]    [c.219]    [c.219]    [c.165]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Среднее значение

Фишер

распределение Фишера распределение



© 2025 chem21.info Реклама на сайте