Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафта

    Опыты с белыми крысами показали, что пары нитропропана менее ядовиты, чем пары бензола, анилина, сероуглерода, четыреххлористого углерода. В США ядовитость низкомолекулярных нитропарафинов принята равной степени ядовитости [86] нафты (легкого бензина). [c.318]

    Можно оказать, что более высокомолекулярные нафтены, содержащиеся в высококипящих фракциях нефти, мало пригодны для сульфохлорирования. [c.373]


    Ниэкомолекулярные нафтены, особенно циклогексан, подавляют крекинг, если присутствуют в концентрациях 5—10% объемн. Нафтены больщего молекулярного веса заметно менее активны. Ароматические углеводороды необходимо брать для подавления крекинга в значительно меньших концентрациях. Повышение концентрации ароматических углеводородов тормозит общий процесс. Наибольшую активность в торможении реакции проявляет толуол. [c.520]

    Нефть получила свое название от слова нафта , что ка языке одного из народов Малой Азии означало просачиваться . Нефть — это горючая маслянистая жидкость чаще темного цвета, реже светло-желтая или даже бесцветная с характерным запахом. Известна нефть с древних времен. Она применялась как лекарство, как осветительный материал, как цементирующее вещество при строительстве и т. д. До середины XIX в. нефть добывали примитивным способом в очень небольших количествах. С появлением в начале XX в. и с дальнейшим развитием двигателестроения потребность в нефти и нефтепродуктах резко возросла, и это дало огромный толчок в добыче и переработке нефти. Многие из виднейших отечественных и зарубежных химиков и инженеров вели работу в области исследования и переработки нефти. Такие ученые, как Д. И. Менделеев, В. В. Марковников, В. Г. Шухов, А. А. Летний, А. М. Бутлеров, [c.5]

    Ароматические углеводороды имеют по сравнению с парафиновыми и нафтеновыми более высокую температуру и плотность, а следовательно, и большую объемную теплоту сгорания. Они несколько более реакционно способны, чем парафины и нафтены. При сгорании ароматических углеводородов образуется значительно больше неполных продуктов сгорания (углерода), чем при сгорании парафинов и нафтенов. Кроме того, они более гигроскопичны. Характеристики ароматических углеводородов приведены в табл. 3. [c.15]

    В церезинах присутствуют твердые нафтены и твердые ароматические углеводороды часто в смеси с твердыми высокоплавкими парафинами. [c.140]

    В масляных фракциях нефтей в большом количестве находятся моно- и полициклические углеводороды — нафтены с пяти- и шестичленными кольцами в молекулах, а также ароматические и нафтеноароматические углеводороды. [c.140]

    Способность смазочных масел окисляться и осмоляться зависит от структуры молекул, их углеводородного состава и условий окисления. Н. И. Черножуковым и С. Э. Крейном установлено, что нафтены, находящиеся в маслах, могут окисляться кислородом воздуха при повышенной температуре. Способность нафтенов окисляться возрастает при увеличении их молекулярного веса и при наличии коротких боковых цепей. Чем больше колец содержится в молекулах нафтена, тем больше получится продуктов окисления. Основными продуктами окисления нафтенов являются кислоты и оксикислоты. [c.142]


    Ароматические углеводороды окисляются несколько труднее, чем нафтены, но стойкость их против окисления падает по мере усложнения молекул, в частности с увеличением числа колец. При этом в случае наличия у ароматических колец коротких боковых цепей (или коротких цепей, связывающих между собой ароматические радикалы) окисление сопровождается образованием высокомолекулярных продуктов— смол, асфальтенов и карбенов, часто выпадающих в осадок. Если даже у ароматических колец имеются длинные алкильные цепи, то в результате окисления образуется меньше полимеров, но больше органических кислот и подобных продуктов, не выпадающих в осадок. [c.142]

    Сырье (крекинг-сырье). Высокомолекулярные соединения расщепляются легче низкомолекулярных, причем парафины нормального строения отличаются наибольшей склонностью к расщеплению далее следуют изопарафины, олефины, нафтены и ароматические углеводороды. [c.16]

    Ароматические углеводороды извлекались из бензина при помощи серной кислоты при этом с целью экономии серной кислоты и для того, чтобы ие затронуть нафтены, мы пользовались данными ГрозНИИ [18]. Для этой цели брали [c.15]

    Нафтено-парафиновая часть освобождалась от деароматизированной фракции с т. кип. 24—60°С. [c.99]

    Вязкость топлив определяется групповым углеводородным составом топлив. Керосиновые фракции нафтено-ароматического основания имеют большую вязкость при одной и той же температуре, чем керосиновые фракции парафинового основания (рис. 3). [c.32]

    В 1880 г. Бельштейн и Курбатов [121] впервые обнаружили, что ири нагревании фракций кавказской нефти или гептана с азотной кислотой или со смесью азотной и серной кислот можно получить в небольших количествах нитроуглеводороды. Эти авторы получили преимущественно нитросоединения циклических углеводородов, так как нафтены нитруются легче, чем парафины, имеющие открытые цепи. Таким путем была освобождена от нафтенов фракция 95— 100° американской нефти. Факт частичного нитрования также и парафинов показывает, что при обработке гептана азотной кислотой получают небольшие количества ннтрогептана. [c.300]

    Так же как для хлорирования и сульфохлорирования, наилучшим техническим исходным материалом для нитрования являются когазин I и II и парафиновый остаток синтеза Фишера — Тропша. Это сырье подвергают очистке путем облагораживающего гидрирования, после этого оцо представляет смесь вполне насыщенных парафиновых углеводоро-родов нормального строения, практически свободных от примесей нафте-нов и ароматических соединений. [c.310]

    Смеси парафиновых, нафтеновых и ароматических углеводородов, содержащиеся в нефти или в ее фракциях, а также азотистые, серлистые и кислородные соединения, содержащиеся частично в форм г гетероциклических соединений, и прочие примеси почти непригодны для сульфохлорирования. Лишь после очистки, например гидрированием под высоким давлением, которое превращает азот азотистых соединений в аммиак, серу сернистых соединений в сероводород, кислород кислородных соединений в воду, а ароматические углеводороды в нафтены, обраауется смесь углеводородов, которая более пригодна для сульфохлорирования. [c.374]

    Мэвити с сотрудниками провел подробные исследования действия органических добавок на подавление процессов крекинга при изомеризации [22]. Так, например, оптимальным количеством бензола как ингибитора изомеризации н-пентана является 0,25—0,5% объемн. Для этой цели можно применять также нафтены и функциональные производные ароматических углеводородов, однако они ведут себя часто совершенно различно. Так, например, хлорбензол очень действенный ингибитор, в то время как о-дихлорбензол не влияет на подавление крекинга. [c.519]

    Линии I—продукты изомеризации II — бутан и пентан III — бутан IV—гексан и тяжелые углеводороды V—пентан VI — неогексан с диизопропилом VII — изопентан VIII— -пентан IX—метил-пентан и л-гексан X — на изомеризаниоп-ную установку XI—шестичлепные нафтены и тяжелые углеводороды. [c.527]

    Углеводороды, входящие в состав авиационных топлив, разделяются на алканы нормального строения и изостроения, нафтены и ароматические (см. гл. 1). Исследование противоизносных свойств отдельных групп углеводородов проводилось при испытании смеси индивидуальных углеводородов равной вязкости. Алканы нормального строения были представлены смесью пентадекана с н-гепта-ном, нафтены — смесью циклогексана с декалином, ароматики — смесью изопропилбензола с а-метилнафталином. Вязкость каждой смеси была подобрана равной 1,5—1,6 сст при 20° С. [c.66]

Рис. 41. Зависимость противоизносных свойств топлив от объемной температуры а —износ при качении I— Т-7-, 2—ТС-1 3—Т-1 нафтил б —износ при скольжении / — Т-7 2 — ТС-1 5 —Т-1 4 — Т-74-ПМАМ 5 — нафтил в —критическая нагрузка при скольжении 1—Т-7 2-Т-1 5-Т-7+ПМАМ 4-ТС-1 5 — нафтил Рис. 41. Зависимость <a href="/info/395995">противоизносных свойств</a> топлив от <a href="/info/1473535">объемной температуры</a> а —износ при качении I— Т-7-, 2—ТС-1 3—Т-1 нафтил б —износ при скольжении / — Т-7 2 — ТС-1 5 —Т-1 4 — Т-74-ПМАМ 5 — нафтил в —<a href="/info/152373">критическая нагрузка</a> при скольжении 1—Т-7 2-Т-1 5-Т-7+ПМАМ 4-ТС-1 5 — нафтил

    Нафтены присутствуют в жидкой и твердой (кристаллической) фазах, входя в состав церезинов. Наиболее легко кристаллизуются нафтены с длинной боковой алкильной группой нормального строения. При наличии разветвленной боковой цепи или нескольких боковых цепей меньшей длины вместо одной длинной температура плавления нафтенов значительно понижается. Но в то же время нафтены, молекулы которых в.место одной длинной боковой цепи при циклическом ядре имеют несколько боковых цепей с тем же числом атомов углерода в них, обладают значительно большей вязкостью и худшими вязкостно-температурными свойствами. Аналогичное влияние на вязкостные свойства оказывает наличие и размеры боковых цепей также у других циклических углеводородов — ароматических и нафтеноароматических. [c.140]

    При солевом методе себестоимость производства масляного альдегида самая низкая — 82 единицы, при методе с неподвижным катализатором — 100 единиц, а при суспензионном методе — даже 120 единиц [18—19]. По литературным данным в США наибольшее распространение приобрел солевой метод с катализатором нафтена-Т0Л1 кобальта. [c.172]

    После выделения ожидаемой нафтено-парафиновой части и половины фракции 24—60°С, приемник заменялся. Появ-98 [c.98]

    Нафтено-парафнновая часть бензина подвергалась фракционированию на колонке с погоноразделительной способностью в 40 теоретических тарелок, узкие фракции от начала кипения до 135°С анализировались тем же методом. [c.207]

    Наиболее важный показатель качества нефти, определяющий Е1ыбор метода переработки, ассортимент и эксплуатационные свой — ства получаемых нефтепродуктов, — химический состав и его распределение по фракциям. В исходных (нативных) нефтях содер — жатся в различных соотношениях все классы углеводородов, кроме непредельных (алкенов) соединений парафиновые (алканы), на-сртеновые (циклоалканы), ароматические (арены) и гибридные -карафино-нафтено-ароматические. [c.60]


Смотреть страницы где упоминается термин Нафта: [c.47]    [c.16]    [c.60]    [c.60]    [c.67]    [c.303]    [c.64]    [c.67]    [c.67]    [c.68]    [c.87]    [c.107]    [c.120]    [c.141]    [c.31]    [c.56]    [c.145]    [c.145]    [c.158]    [c.159]    [c.159]    [c.160]    [c.161]    [c.228]    [c.32]   
Смотреть главы в:

Катализ в промышленности. Т.2 -> Нафта

Спутник химика -> Нафта

Спутник химика -> Нафта


Очистка технологических газов (1977) -- [ c.0 ]

Справочник азотчика Том 1 (1967) -- [ c.12 , c.116 ]

Каталитические процессы переработки угля (1984) -- [ c.0 ]

Органическая химия Том1 (2004) -- [ c.160 ]

Катализ в промышленности Том 1 (1986) -- [ c.80 , c.95 , c.96 ]

Промышленная органическая химия (1977) -- [ c.18 , c.39 , c.49 ]

Лакокрасочные покрытия (1968) -- [ c.258 ]

Основы технологии синтеза каучуков Изд3 (1972) -- [ c.111 ]

Очистка технических газов (1969) -- [ c.17 , c.265 ]

Курс органической химии (0) -- [ c.83 ]

Справочник азотчика Т 1 (1967) -- [ c.12 , c.116 ]

Коррозия пассивность и защита металлов (1941) -- [ c.504 ]

Курс органической химии (0) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Нафталам

Нафтеиы

Нафтил

Нафтилы

Нафто



© 2025 chem21.info Реклама на сайте