Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафины нормальные

    Изомеризация парафинов серной кислотой в отличие от изомеризации в присутствии катализаторов типа галоидных солей алюминия ограничивается лишь структурами, в которых имеются третичные атомы углерода кроме того, образуются лишь изомеры с третичным атомом углерода. Таким образом, парафины нормального строения не принимают участия в реакции ни как исходные вещества, ни как конечные продукты то же относится и к таким соединениям, как неогексан, у которого есть четвертичный атом углерода, но нет третичного. [c.33]


Рис. 25. Зависимость константы равновесия реакции образования аддуктов мочевины с парафинами нормального строения от температуры. Рис. 25. <a href="/info/841703">Зависимость константы равновесия</a> реакции <a href="/info/472867">образования аддуктов мочевины</a> с парафинами нормального строения от температуры.
Рис. 26. Зависимость константы равновесия реакции образования аддуктов мочевины с парафинами нормального строения от числа атомов углерода в молекуле углеводородов (при различных температурах). Рис. 26. <a href="/info/841703">Зависимость константы равновесия</a> реакции <a href="/info/472867">образования аддуктов мочевины</a> с парафинами нормального строения от <a href="/info/3579">числа</a> атомов углерода в молекуле углеводородов (при различных температурах).
    Ббльшая часть парафина, содержащегося в сырой нефти, выкипает в том же температурном интервале, что и масляные дистилляты. Поэтому разделить парафины и масла перегонкой невозможно. В масляных фракциях содержатся главным образом парафины нормального строения, в то время как в высококипящих фракциях и остаточных продуктах преобладают парафиновые углеводороды изостроения микрокристаллического характера (церезин) [33]. [c.46]

    ВЫДЕЛЕНИЕ ПАРАФИНОВ НОРМАЛЬНОГО СТРОЕНИЯ ИЗ НЕФТЯНЫХ ФРАКЦИЙ МЕТОДОМ ЭКСТРАКТИВНОЙ КРИСТАЛЛИЗАЦИИ С МОЧЕВИНОЙ [c.181]

    Сырье (крекинг-сырье). Высокомолекулярные соединения расщепляются легче низкомолекулярных, причем парафины нормального строения отличаются наибольшей склонностью к расщеплению далее следуют изопарафины, олефины, нафтены и ароматические углеводороды. [c.16]

    Мы предположили, что количество парафиновых углеводородов, полученных согласно групповому составу, целиком относится к содержанию парафинов нормального строения. [c.121]

    Несмотря на то, что в настоящее время в США из жидких нефтепродуктов производится сравнительно небольшое количество этилена, имеются сведения, что в дальнейшем количество жидкого углеводородного сырья, направляемого на пиролиз, возможно, будет увеличиваться. Примером является предложенный фирмой Юниверсал Ойл Продайте процесс пиролиза парафинов нормального строения, выделяемых из бензинов для повышения октанового числа последних [23]. [c.36]

    Двуокись серы полностью растворяет ароматические и олефиновые углеводороды, а также частично на4)теновые и изопарафиновые (вероятно, благодаря образованию некоторых неустойчивых донорно-акцепторных комплексов) и совершенно пе растворяет парафины нормального строения. [c.61]


    Как правило, при одном и том же числе углеродных атомов в молекуле углеводороды с разветвленной цепью отличаются от углеводородов нормального строения более низкими плотностью, температурой застывания и температурой кипения. Парафиновые углеводороды с разветвленной цепью придают высокое качество бензинам, тогда как парафины нормального строения отрицательно влияют на поведение топлива в карбюраторных двигателях. Углеводороды парафинового ряда нормального строения являются желательными компонентами реактивного и дизельного топлив, смазочных масел, однако до определенных концентраций, при которых эти нефтепродукты удовлетворяют требованиям Государственных стандартов (ГОСТ) по низкотемпературным свойствам. [c.23]

    Скорость окисления парафинов нормального строения увеличивается с ростом их молекулярного веса метан — наиболее трудно окисляемое соединение этого ряда. Несмотря на то что окисление (без катализаторов) метана начинается уже около 400 °С, процесс приобретает заметную скорость лишь при температуре около 575 °С, тогда как гомологи метана окисляются при более низкой температуре. [c.134]

    Продолжительность начального периода индукции ири окислении уменьшается с увеличением температуры и содержания парафинов нормального строения. [c.150]

    Выше было показано, что окисление у первичных, вторичных и третичных атомов углерода проходит с различной скоростью. Недавно экспериментально было обнаружено, что скорости окисления различных метиленовых групп парафина нормального строения приблизительно равны. Состав продуктов первичного окисления (гидроперекиси, спирты) соответствует в этом случае статистическому распределению. [c.152]

    Полученные бензины имеют невысокое ( 40) октановое число, так как в основном состоят из парафинов нормального строения. Твердые парафины имеют температуру плавления около 90 °С. [c.255]

    Выделение ароматических углеводородов. Используя цеолиты СаА, можно разделять ароматические углеводороды и парафины нормального строения. Ароматические углеводороды, молекулы которых не могут проникнуть через окна цеолитов адсорбционной полости, остаются в фильтрате, а адсорбированная фаза содержит высококонцентрированные нормальные парафины. В тех случаях, когда окна достаточно широки для входа молекул во внутреннюю структуру, цеолиты проявляют резко выраженную избирательность по отношению к ароматическим углеводородам. Это свойство используется для промышленных и аналитических целей. [c.114]

    Фракционирование методом адсорбции позволяет количественно отделить парафино-нафтеновую часть бензина от ароматической части. Оно пригодно также для разделения фракций керосинов и смазочных масел, отделения моноциклических ароматических углеводородов от бициклических и углеводородов — от смолистых веществ. Адсорбцией па угле можно отделить парафины нормального строения от изопарафинов и нафтенов. [c.86]

    В твердом состоянии молекулы углеводородов расположены упорядоченно, образуя кристаллы различной структуры. В зависимости от числа атомов углерода в молекуле и температуры кристаллизации индивидуальные н-парафины, относящиеся к полиморфным соединениям, могут кристаллизоваться в четырех формах гексагональной (а-форма), орторомбической (р-форма), моноклинной (у-форма) и триклинной (б-форма), причем последние две формы имеют угол наклона осей молекул к плоскости, в которой расположены концевые группы, соответственно 73° и 61°30. В кристаллах гексагональной структуры молекулы н-парафинов расположены так, что длинные оси их перпендикулярны плоскости, в которой расположены концевые группы молекул. При такой упаковке молекулы имеют свободу вращения вокруг своих длинных осей. Орторомбическая структура характеризуется таким же расположением молекул, однако отсутствие гексагональной симметрии обусловливает только колебательные движения молекул около своего среднего положения. Такая же форма движения имеет место и в случаях моно- и триклинной структуры кристаллов. Схематическое расположение молекул парафинов нормального строения в кристаллах разной модификации показано на рис. 28, а размеры элементарных ячеек приведены в работе [4], где указано на возможность образования кристаллов с 13 различными параметрами. Полиморфизм присущ всем нечетным н-па-рафинам, начиная с Сэ, и четным от С22 до С36. [c.120]

    Несмотря на данные патентной литературы [1], согласно которым при введении хлора и двуокиси серы в бензол, по-видимому, образуется п-хлорбензолсульфохлорид, не удалось сульфохлорировать чистые ароматические углеводороды со сколько-нибудь заметным выходом. Было даже установлено, что наличие ароматических углеводородов в виде примеси в парафинах нормального строения явно снижает их способность к сульфохлорированию. По гомологам бензола новейшие исследования в этом отношении имеются у Крои ел ин а с сотрудниками [7]. Толуол только хлорируется, этилбензол сульфохлорируется на 8%, н-пропилбензол — на 20% и высшие гомологи сульфохлорируются в боковой цепи немного больше. [c.373]

    ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ПАРАФИНОВ НОРМАЛЬНОГО СТРОЕНИЯ В КЕРОСИНАХ [c.184]

    Для определения содержания парафинов нормального строения в керосинах или отдельных их фракциях сначала онределяют [c.184]


    Парафины нормального строения и изопарафины содержатся в маслах в небольшом количестве. [c.252]

    Промышленным сырьем, в основном состоящим из парафи Нов нормального строения, является когазин, синтезируемый по методу Фишера и Тронша. Он служит наряду с строго. индивидуальными парафиновыми углеводородами наилучшим исходным материалом для сульфохлорирования. Когазин состоит примерно из 70% парафинов нормального строения, остальные 30% являются изопарафинами. В нем полностью отсутствуют циклические соединения. [c.396]

    Что касается чистоты исходного сырья, то в отношении окисляе-мости и качества окаидата для окисления больше всего пр ИГ0 ДНЫ чистые парафины нормального строения. [c.447]

    Термическое алкилирование было впервые подробно изучено Фрейем [7—9]. Парафины могут при определенных условиях реагировать с олефинами при повышенных температурах, когда крекинг еще не наступает. Особенно хорошо проходит алкилирование под давлением, при этом парафины нормального и изомерного строения реагируют почти с одинаковой скоростью. Термический метод был внедрен в промышленность специально для получения неогексана <2,2-диметилбутана) [7] взаимодействием этилена с пзобутаном  [c.252]

    Селективность каталитического действия в процессах селективного гидрокрекинга (СГК) достигается применением специаль — них катализаторов на основе модифицированных высококремне— земных цеолитов, обладающих молекулярно— ситовым свойством. Катализаторы СГК имеют трубчатую пористую структуру с разме — рсМи входных окон 0,5 — 0,55 нм, доступными для проникновения и рс агирования там только молекулам парафинов нормального с тро — ег ИЯ. Для гидрирования образующихся продуктов крекинга в цеолит ВЕодят обычные гидрирующие компоненты (металлы У1П и VI групп). [c.234]

    Фильтруемость парафиново-дистиллятных фракций при установленном фракционном составе этих фракций и равной четкости их фракционировки зависит от содержания в них парафина. Нормальной величиной является фильтруемость на уровне 68— 75 пунктов. Дистилляты фильтруеыостью выше 75 пунктов оцениваются как весьма удовлетворительные, а ниже 60 пунктов — неудовлетворительные. При фильтруемости же ниже 50 пунктов дистиллят следует считать вообще не пригодным для фильтр-прессования. [c.27]

    Экспериментальное изучение каталитического 1 рекинга показало, что при обычных режимах и одинаковых условиях процесса наиболее устойчивыми являются незамещенные ароматические углеводороды. За ними следуют парафиновые углеводороды. Значительно легче крекируются нафтено-ароматические и высокораз-ветвлейные парафиновые углеводороды и еще быстрее — нафтено-гые, а также заыеп1енные арома Ические углеводороды. Олефины наименее стойки в условиях каталитического крекинга. Образующиеся при расщеплении парафинов нормального строения л й-новые углеводороды легко изомеризуются и дальше часть их превращается в результате реакций перераспределения водорода в изопарафины. Скорость крекинга парафиновых и нафтеновых углево дородов быстро растет с увеличением молекулярного веса соеди-ненив. [c.34]

    Особенно характерно, что для молярного объема нормальных углеводородов от метана до нонана при —253° и для молярного объема твердых парафинов нормального строения от Схз до С , определенного по рентгенографическим данным, прямеш1мо простое линейное уравнение. Отсюда можно сделать естественный вывод о том, что для кристаллического состоя- I ния углеводородов нормального строения линейное уравнение точно выражает зависимость молярного объема от числа атомов углерода в молекуле.  [c.229]

    Изучение изомеризации предельных угленодородов в течение болсс двух десятилетий все возрастающим числом исследователей дало много сведений, важных как для техники, так и для теории. Исследования в этом направлении стимулировались потребностью в изобутане — сырье для процессов алкилирования, а также желательностью иревращения содержащихся в бензине парафинов нормального строения в изомеры с разветвленными цепями, обладающие более высокими аитидетонацион-иыми свойствами. Практическое значение аналогичного процесса изомеризации алкилциклопентанов в циклогексан или его алкилзамещенные объясняется главным образом тем, что эти последние являются промежуточными соединениями при производстве соответствующих ароматических углеводородов посредством дегидрогенизации. Сам циклогексан также является сырьем для получения адипиновой кислоты для производства иейлопа. Помимо этой практической стороны дела, изучение подобных реакций может пролить свет на поведение углеводородов и помочь в разъяснении механизма каталитических реакций. [c.14]

    Серная кислота вызывает селективную изомеризацию парафинов. Нормальные парафины и парафины, содержащие четвертичные углеродные атомы, не изомеризуются [436] только изопара-фипы подвергаются воздействию и только изопарафины образуются в процессе реакции [407]. Метил легко перемещается вдоль парафиновой цепочки, следовательно, других изменений в боковой цепи меньше. Концентрация серной кислоты является определяющим параметром скорости реакции показывают крутой максимум при концентрации кислоты 99,8% и, по всей вероятна [c.118]

    В соответствии со сказанным выше, при пиролизе бензинов в химических превращениях участвуют по-разному следующие группы углеводородов парафины (нормальные, моно- и полиметилзамещенные) и пафтены. [c.257]

    В результате выделения парафинов нормального строения при иомощи концентрированной азотной и хлорсульфоиовой кислот жарафины изостроения и нафтены окисляются и унте не могут идти на дальнейшее исследование. Для парафинов нормального строения состава jg и выше более удобен метод выделения при помощи растворов мочевины. Мочевина образует с этими углеводородами довольно устойчивые кристаллические продукты присоеди-яепия. Нафтены и изопарафины остаются незатронутыми. (Ис-ключзпия и особенности см. стр. 181.) [c.89]

    Для детализации состава керосинов применяют комплексообразование парафинов нормального строения с мочевиной, позволяющее выделять эти углеводороды из смесей с изонарафпиами и нафтенами. [c.114]

    Число индивидуальных углеводородов, идентифицированных в керосинах, невелико. К ним относятся парафины нормального ( трое1 ИЯ состава iaHng —выделенные из различпьсх иефтей, а также некоторые моно- и бициклические ароматические и нафтеновые углеводороды. [c.114]

    Процесс кристаллизации начинается с выделения из пересыщенного раствора мельчайших частиц кристаллизующегося вещества — зародышей кристаллов. Они способны расти, причем рост кристаллов происходит наиболее легко на острых углах первоначальных зародышей. На микрофотографиях при большом увеличении наблюдается спиральная структура поверхности кристаллов ларафиновых углеводородов. Механизм роста кристаллов индивидуальных парафинов нормального строения и их смесей объясня- ет дислокационная теория 1[4, 5]. [c.118]

    Структура жидких углеводородов определяется энергетическими возможностями их молекул, причем существует три варианта жидкого состояния длинноцепных углеводородов i[8] полная свобода вращения молекул жидкости при температуре, близкой к температуре кипения состояние, при котором возможно движение отдельных звеньев цепи псевдокристаллическое состояние при приближении к температуре кристаллизации. Переход углеводородов из жидкого состояния в твердое (кристаллизация) и из твердого в жидкое (плавление) определяется характером сил межмолекулярного взаимодействия. Длинноцепные углеводороды, к ко-которым относятся нормальные (начиная с ie) и слаборазветв-ленные парафиновые, нафтеновые и ароматические углеводороды с длинными алкильными цепями, являются неполярными или слабополярными веществами, поэтому взаимодействие между их молекулами происходит в основном за счет аддитивных дисперсионных сил. Длинноцепные углеводороды характеризуются неравномерным распределением сил межмолекулярного взаимодействия. У таких углеводородов наиболее сильно развиты дисперсионные силы, направленные перпендикулярно оси цепи нормальнога строения, что обусловливает их возможность к сближению при понижении температуры, когда тепловое движение молекул умень-щается. При переходе из жидкого состояния в твердое и наоборот площадь поперечного сечения алкильных цепей изменяется. Увеличение площади поперечного сечения молекул при плавлении обусловлено их вращением вокруг связей углерод — углерод, в результате чего молекула может занимать больший объем [8]. Когда эффективное поперёчное сечение молекул превышает допустимое силами межмолекулярного, притяжения, вещество плавится. При одном и том же числе атомов углерода в молекуле наиболее высокой температурой плавления обладают парафины нормального строения, имеющие возможность дисперсионного взаимодействия между всеми атомами углерода соседних молекул. Наличие в-молекуле разветвлений или циклов понижает возможность их ориентировки, так как межмолекулярные силы взаимодействия в этом случае проявляются в основном в цепях нормального строения,, что приводит к резкому снижению температуры плавления. [c.119]

    Комплексы тиокарбамида менее устойчивы, чем карбамидные. Так же как в случае карбамида, взаимодействие углеводородов с тиокарбамидом определяется соответствием размеров их молекул тгаперечно му сечению каналов в рвшепке тиокарбам ида. Диа,метр поперечного сечения молекул, способных давать комплексы с тиокарбамидом, составляет примерно 5,8—6,8 [41]. Обычно соединения, образующие комплекс с карбамидом, не дают комплекса с тиокарбамидом. Однако некоторые длинноцепные углеводороды при 0°С образуют малоустойчивые комплексы с тиокарбамидом. Это объясняется тем, что при пониженной температуре цепь молекулы парафина нормального строения свертывается в миоговит-ковую спираль, в результате размеры молекул удовлетворяют пространственным требованиям для комплексообразования с тиокарбамидом. [c.205]


Смотреть страницы где упоминается термин Парафины нормальные: [c.58]    [c.303]    [c.195]    [c.118]    [c.242]    [c.44]    [c.199]    [c.107]    [c.440]    [c.441]    [c.199]    [c.199]    [c.203]   
Моделирование и системный анализ биохимических производств (1985) -- [ c.49 , c.83 ]

Химия и технология полимеров Том 1 (1965) -- [ c.132 , c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы также Парафины, Углеводороды насыщенные нормальные

Нормальные парафины в легком прямогонном бензине

Нормальные парафины в нефти

Нормальные фторированные парафины

Ряд бинарных гетероазеотропов, образованных метанолом с нормальными парафинами



© 2025 chem21.info Реклама на сайте