Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрирование также Восстановление ароматических соединений

    Применяют также амальгамы щелочных металлов и жидкую эвтектическую смесь натрия и калия. Некоторые углеводороды, растворенные в эфире, петролейном эфире или бензоле, реагируют с металлом, суспензированным в растворе. Поскольку щелочные металлы растворяются в жидком аммиаке, в котором в свою очередь хорошо растворимы углеводороды, за исключением предельных, существует способ металлирования в аммиачном растворе [10, 11]. Одновременно в большей или меньшей степени параллельно могут протекать реакции восстановления (гидрирования) ненасыщенных углеводородов, присоединения металла к этиленовым и ароматическим соединениям, а также аммонолиза [13]. Некоторых побочных процессов удается избежать, если металлировать углеводороды в жидком аммиаке при помощи амида калия (см. стр. 115). [c.112]


    Состав активного ансамбля характерен для проводимого процесса. Так, восстановление нитрогруппы, разложение перекиси водорода, катализ гремучего газа и некоторые другие процессы окислительно-восстановительного характера требуют одноатомного ансамбля. Для случаев гидрирования непредельных соединений с двойной, сопряженной двойной и кумулированной связями, исследованных А. Н. Мальцевым [197], а также для гидрирования ацетиленовых и ароматических соединений, проведенного Д. В. Сокольским с сотрудниками [198], А. В. Фростом и В. М. Грязновым с сотр. [199] в качестве элементарного активного центра обнаруживается двухатомный ансамбль Pta, Pdj, что, между прочим, согласуется с дублетной схемой гидрирования [c.114]

    Для низкотемпературного гидрирования бензола, его гомологов и производных используются платиновые и родиевые катализаторы, в отдельных, исключительных случаях - высокоактивные сорта скелетного никеля. Палладий при низких температурах не катализирует восстановления бензольных колец и широко используется при гидрогенолизе связей С-гетероатом в бензильном положении, не затрагивающем ароматических циклов, а также при дегалогенировании ароматических соединений  [c.51]

    В настоящее время для восстановления ароматических нитро-соединений используют различные агенты (железо с соляной кислотой, сульфиды металлов, цинк или железо со щелочью), а также каталитическое гидрирование при 180-230 °С и давлении [c.797]

    Восстановление углерод-углеродных кратных связей. Наиболее общий процесс восстановления алкенов, алкинов, ароматических соединений и их производных — это каталитическое гидрирование, с которым мы уже часто встречались в предыдущих главах (стр. 353). Гидриды металлов, как правило, не затрагивают олефиновую связь в обычных условиях. В некоторых случаях а,р-ненасыщенные связи восстанавливаются в результате побочной реакции при восстановлении литийалюминийгидридом других функциональных групп. Найдено также, что гидрид алюминия гладко присоединяется к конечным двойным связям алкенов при кипячении в бензоле. [c.441]

    Литийалюминийгидрид— удобный реагент для восстановления нитросоединений, нитрилов, амидов, азидов и оксимов до первичных аминов.Возможно также каталитическое гидрирование. Ароматические соединения лучше всего восстанавливаются водородом, образующимся при реакции металла с кислотой или полисульфидами аммония или натрия (см. гл. 24). Восстановление Ы-замещенных амидов приводит к вторичным аминам [c.56]


    Большинство реакций восстановления характеризуется присоединением водорода по кратной связи. Гидрирование олефинов и ацетиленов на поверхности переходных металлов относится к радикальным реакциям этот тип восстановления будет рассмотрен в главе 26. Восстановление растворенными металлами, например натрием, может быть классифицировано как нуклеофильное присоединение в соответствии с этим оно наблюдается для карбонильной группы, соединений с двойной связью С = С, сопряженной с ароматическим ядром, и для многих азотсодержащих соединений, таких, как нитро-, нитрозе- и азосоединения. Этот второй тип восстановления и рассматривается в настоящей главе. Сюда включены также электролитическое восстановление и восстановление действием металлов и ионов металлов, которое может протекать с образованием радикалов. [c.477]

    Предложенная конструкция контактного аппарата является универсальной и позволяет получать на нем не только хлоранилины, но и широкий ассортимент других ароматических аминов, а также пригодна для жидкофазного восстановления нитросоединений жирного ряда, нитрилов и гидрирования различных органических соединений с ненасыщенными связями. [c.97]

    Металлический цинк катализирует ограниченное число процессов. Почти все они относятся к реакциям с участием водорода и дегидрированию, в которых цинк проявляет высокую селективность. Активность металла в простейших реакциях с участием водорода (орто-параконверсия, рекомбинация Н-атомов) невелика [1, 2]. Совершенно неспецифично для цинка гидрирование изолированной С=С-связи [4J и ароматических систем, зато очень характерно гидрирование С=С-связи, сопряженной с С=С-связью или ароматическим кольцом (без гидрирования последних) [3—5] гидрирование С= О-связи, сопряженной с С=С-связью [3, 5, 15, 16] гидрирование С=С-связи до С=С [3, 6—11]. Эти процессы обычно катализирует скелетный цинк. Гидрирование изолированной С= О-связи до С—ОН, а также восстановление ароматических карбонильных соединений ускоряют преимущественно цинк-медные катализаторы [13, 17, 18, 21, 22]. На этих же контактах при более высоких температурах происходят обратные процессы дегидрирования спиртов [29—33, 37—39] парообразный цинк катализирует разложение метанола на СО и Нг [26—28]. [c.1346]

    Ароматические соединения можно восстанавливать по реакции каталитического гидрирования [273], но в этом случае требуются более высокие температуры (100—200 "С), чем для восстановления обычных двойных связей. Хотя реакцию, как правило, проводят с гетерогенными катализаторами, известно также применение и гомогенных катализаторов, причем в этом случае условия реакции значительно мягче [274]. Использование межфазиого катализа также позволяет успешно проводить гидрирование в мягких условиях [275]. Многие функциональные группы, такие, как ОН, 0 , СООН, OOR, NH2 и т. д., не затрагиваются в этой реакции, но некоторые группы восстанавливаются легче, чем ароматическое кольцо. Среди таких групп СН2ОН, которая гидрируется до СН3 (т. 2, реакция [c.185]

    Скорость гидрирования ароматических соединений также зависит от характера и числа заместителей в цикле, причем при замещении изменяются как адсорбируемость соединения, так и скорость присоединения водорода к адсорбированному субстрату. Так, толуол гидрируется на К1-А120з (140 °С, 35 атм) в 2 раза, ксилолы в 3,2-4,3 раза, а пентаметилбензол в 200 раз медленнее бензола на РЮ2 в уксусной кислоте (30 °С, 2,4-4 атм) относительные скорости собственно восстановления, т. е. восстановления адсорбированных на катализаторе бензола, толуола, орто-, мета- и пара-ксилола, составляют соответственно 1,00 0,71 0,44 0,61 и 0,77 адсорбируемость соединений в указанной последовательности также падает. [c.53]

    Ароматические соединения обладают электронной конфигурацией, имеющей специфический характер что проивлиется также в процессе восстановчения Гидрирование двойных свячей в бензольном кольце, как частичное, так и полное, осуществить значительно труднее, чем в соединениях с открытой цепью и в алициклических соединениях Эта реакция приводит к потере ароматических свойств. Больщое влияние иа степеш. и скорость восстановления оказывает характер, количество и (юложепие заместителей в кольце, причем имеет значение и применяемый восстановитель. [c.28]

    В предыдущем разделе, посвященном методам синтеза ациклических алканов, были перечислены стандартные пути удаления функциональных групп в алкилгалогенидах, олефинах, карбонильных соединениях и т. п. и замена их на водород или алкильную группу. В подавляющем большинстве случаев эти методы применимы независимо от того, является ли алкильная группа циклической или ациклической. Так, восстановление по Кижнеру — Вольфу проходит обычно равно хорошо с ациклическими и циклическими кетонами, а гидрирование углерод-углеродной двойной связи протекает удовлетворительно независимо от того, является или нет двойная связь частью циклической системы. Эта реакция восстановления может быть успешно применена и для двойных связей, являющихся частью ароматической циклической системы [81]. Многие производные циклогексана были успешно получены каталитическим гидрированием соответствующих бензоидных систем в присутствии гетерогенных катализаторов (см. разд. 2.1.7.1). В общем случае, для восстановления бензольного кольца требуются более жесткие условия реакции, чем для восстановления изолированной двойной связи. Однако бензол и многие алкилбензолы гладко гидрируются над никелем Ренея под давлением при температурах 100—300°С. Полиядерные ароматические соединения также можно прогидрировать таким путем можно получать декалин, пергидроантрацен, пергидрофенантрен и аналогичные конденсированные полициклоалканы [81]. [c.138]


    В присутствии смеси На и СО (соотношение 1 1) карбонил-гидрид кобальта, образующийся in- situ из октакарбонила или солей кобальта, катализирует гидрирование самых разнообразных субстратов. Некоторые ароматические соединения подвергаются частичному восстановлению, например антрацен гидрируется до 9,10-дигидроантрацена, пирен — до 4,5-дигидропи-рена, нафталин — до тетралина и т. д. Тиофен восстанавливается до. тиофана, индолы — до дигидроиндолов, а пиридин — до N-метилпиперидина. Могут быть также восстановлены и соединения с другими функциональными группами, например бензи-ловый спирт до толуола, кетоны до вторичных спиртов, арил-кетоны до углеводородов и альдегиды до спиртов (полный перечень соединений приведен в работе [3]). [c.72]

    Помимо рассмотренных выше работ по гидрированию ароматического кольца, исследовалось также восстановление многочисленных других ароматических соединений. Большая часть этих работ была связана с задачами препаративной органической [c.254]

    Восстановление ароматических альдегидов до углеводородов можно осуществить каталитическим гидрированием над платиной [168], реакцией Вольфа — Кижнера и родственным арилсуль-фонилгидразиновым методом [169] схема (78) , а также восстановлением по Клемменсену аналогично превращению кетонов и алифатических альдегидов [170] (см. разд. 5.1.4.2). Интересным методом, который до сих пор с успехом применялся только к аро-матическим альдегидам, является гидрирование с каталитическим переносом [171]. Этот метод экспериментально проще и безопаснее, чем каталитическое гидрирование смесь карбонильного соединения, катализатора и большой избыток донора (например, циклогексена) кипятят с обратным холодильником 3—5 ч [уравнение (79)[. Основной побочной реакцией является декарбонилирование или, например в случае о-карбоксибензальдегида, образование лактона это показывает, что восстановление проходит через промежуточное образование бензилового спирта. Восстановление бензальдегида в присутствии уксусного ангидрида дает бензилацетат (72%) [171]. [c.734]

    Электролитическое восстановление применяется также для гидрирования ненасыщенных соединений, удаления атомов галогена (например, I4 H I3- СНгСЦ) и десульфирования ароматических соединений. Электрохимически получая реакционноспособные компоненты в соответствующем растворе подходящих реагентов, можно синтезировать весьма разнообразные органические вещества. [c.245]

    I < Вг С С1 [1725]. Изучались также и другие реакции гидрогенизации органических соединений в присутствии карбонилов металлов, например, восстановления ароматических непредельных соединений [1725а], лигнина [1726] и т. н. Подробный обзор по гидрированию алифатических и ароматических углеводородов в присутствии некоторых карбонилов металлов в качестве катализаторов приведен Вольниным и сотр. [1727]. [c.126]

    Восстановление азотсодержащих соединений а) Нитросоединения СНзСНгСНСНз СНзСНаСНСНз эфир 1 N02 КНз 2-Нитробутан 2-Аминобутан (85%) Литийалюминийгидрид — удобный реагент для восстановления нитросоединений, нитрилов, амидов, азидов и оксимов до первичных аминов. Возможно также каталитическое гидрирование. Ароматические соединения лучше всего восстанавливаются водородом, образующимся при реакции металла с кислотой или полисульфидами аммония или натрия (см. гл. 24). Восстановление К-замещенных амидов приводит к вторичным аминам [c.22]

    В ранее опубликованной статье [1] был дан обзор литературы, освещающей свойства и активность трех основных катализаторов парофазной ступени гидрогенизации топлива — ШЗг, + N 5 + А Оз, У82+ + алюмосиликаты, а также изложены результаты экспериментального исследования сравнительной активности этих катализаторов в реакциях гидрирования непредельных, конденсированных ароматических и одноядерных ароматических углеводородов и в реакции восстановления фенола. Было показано, что опубликованные сведения об активности промышленных вольфрамовых гидрогенизационных катализаторов в главнейших реакциях процесса парофазной деструктивной гидрогенизации (реакциях гидрирования ненасыщенных углерод-углеродных связей, восстановления кислородных, сернистых, азотистых соединений, расщепления и изомеризации) имели лишь качественный и, в ряде случаев, противоречивый характер. [c.96]

    Катализаторы типа молибдата кобальта применяют для удаления ацетиленовых соединений из газов пиролиза — обычно после выделения ароматических углеводородов и кислотных газов. Промышленный процесс чаще всего проводят при следующих условиях давление 5,2—15,7 ат и выше, температура 177—316° С, объемная скорость 500—1000 ч . Для повышения избирательности гидрирования ацетиленовых углеводородов и снижения скорости образования полимерных отложений во время реакции к поступающему газу добавляют водяной пар. По мере образования полимерных отложений активность катализатора постепенно снижается и, в конце концов, необходимо его регенерировать. Снижение активности можно компенсировать, прогрессивно повышая температуру процесса. Катализатор в известной мере отравляется небольшими количествами сернистых соединений, содерн ащимися в газе, но вредное влияние серы также можно устранить повышением температуры процесса. Загрязненный катализатор регенерируют (обычно после 4—6 недель работы) обработкой водяным паром или смесью водяного пара с воздухом и последующим восстановлением водородом прп 400—455° С [32]. Содержание ацетиленовых углеводородов удается снизить с 1—2% до менее 0,001% при крайне незначительной потере олефинов. [c.338]

    Ароматические субстраты. Палладий на носителе неэффективен для восстановления алифатических карбонильных соединений, однако палладий на угле является наилучшим катализатором гидрирования ароматических альдегидов и кетонов. Основной недостаток этого катализатора связан с гидрогено-лизом, в результате которого образующийся спирт превращается в углеводород. Палладий обычно промотирует гидрогепо-лиз (см. также разд. 7.8). Гидрогенолиз с использованием палладия дает хорошие выходы продуктов в мягких условиях и может конкурировать с более известным восстановлением по Клемменсену или Кижнеру—Вольфу [схемы (7.75), (7.76)] [93, 94]. [c.284]

    Растворы комплексов родия с ароматическими кислотами, в особенности с аминокислотами, в диметилформамиде активны в гидрировании ароматических колец (антрацен > бензол > нафталин). Ь-Тирозиновое производное родия катализирует асимметрическое гидрирование ацетоуксусного эфира до этилового эфира р-оксимасляной кислоты. Предположено, что эти катализаторы сходны с ферментом гидрогеназой [222]. Ароматические лиганды, например дурохинон, мезитилен и др., также стабилизируют восстановленные соединения родия, рутения, иридия и молибдена в растворе в диметилформамиде. Получающиеся системы являются хорошими катализаторами гидрирования олефинов [222]. [c.82]

    Фактически дисульфид вольфрама является чрезвычайно активным и применимым в весьма широком диапазоне условий катализатором. В литературе указывалось [152], что оп может использоваться для гидрирования олефииовых углеводородов при температуре выше 200° или гидрирования ароматических углеводородов при температуре выше 300°. При 400° на этом катализаторе достигается практически полное восстановление азотистых и сернистых соединений в углеводороды. Он обладает также значительной изомеризующей и крекирующей активностью. Для этих реакций, протекающих в результате разрыва связей С—С, требуются температуры около 400° и выше. [c.396]

    Интересно, что восстановление целлюлозы при повышенной температуре также приводит к циклизации углеродной цепи с образованием соединений ароматического и алициклического рядов. Гидрирование целлюлозы водородом в присутствии никелевого катализатора при 400—440° С протекает с образованием газообразных и жидких продуктов, выделенных в виде дегтя с выходом23%. Главной составной частью дегтя является кислородсодержащее [c.67]

    В промышленной практике известен ряд процессов гетерогенного катализа в жидкой фазе с участием газообразного реагента. При гидрировании жиров, непредельных и ароматических углеводородов, восстановлении нитро- и нитрильных групп циклоалифатических, алифатических и жирноароматических соединений процесс проводится в жидкой фазе, контактируемой с водородом. Известны случаи окисления жирных и жирноароматических углеводородов кислородом воздуха в условиях жидкофазного гетерогенного катализа. Все эти процессы относятся к такНм, скорость которых определяется не только диффузией реагирующих веществ к поверхности частицы катализатора, но также скоростью массообмена между газовой и жидкой фазами и дуффузией частиц растворенного газа в жидкой фазе. Поскольку диффузия частиц жидкой фазы к поверхности зерен катализатора гораздо менее затруднена, скорость процесса может быть лимитирована скоростью транспорта частиц из газовой фазы к поверхности катализатора через поверхность раздела газовой и жидкой фаз. [c.430]

    Из основ хромофорной теории цветности следовало, что при образовании окрашенного соединения необходимо учитывать лишь наличие в соединении хромофорных и ауксохромных группировок. Ароматическое же ядро, входящее в состав хромогена, оставлялось при этом без внимания, и считалось, что оно остается таким же, каким было в исходном бесцветном соединении. Ошибочность этого взгляда может показать следующий пример известно, что парабен-зохинон (I) окрашен в желтый цвет, а продукт его гидрирования циклогександион-1,4 (II)—бесцветный, хотя в нем и сохраняются две хромофорные карбонильные группы. Восстановление парабен-зохинона в гидрохинон (III) также вызывает переход желтого соединения в бесцветное. Нетрудно видеть, что в продуктах II и III хиноидная структура отсутствует  [c.61]

    Дальнейшие указания о строении витамина D были получены в результате исследования двух изомерных (стереоизомерных ) продуктов присоединения малеинового ангидрида к витамину Dg, а также и их ди-гидропроизводных, образующихся при насыщении двойной связи в боковой цепи. Виндаус считал, что малеиновый ангидрид присоединяется к диеновой системе витамина, простирающейся от С , до С д, как в формуле II. В результате озонирования обоих продуктов присоединения дигидропроизводных образуется насыщенный 19-кетон VII идентичный продукт получается и при гидрировании соединения V. Больший интерес представляет дегидрирование селеном продукта присоединения, так как установлено, что получающееся вещество является 2,3-диметилнафталином (VI). Неожиданным оказалось восстановление карбонильных групп ангидрида в метильные группы однако Тиле и Траутман нашли, что подобная реакция может быть осуществлена и с более простыми гидроароматическими ангидридами или с ароматическим ангидридом в смеси с донором водорода. Так, 2,3-диметилнафталин образовался при нагревании ангидрида нафталин-2,3-дикарбоновой кислоты с п.-циклогексилфено-лом и с селеном. [c.168]


Смотреть страницы где упоминается термин Гидрирование также Восстановление ароматических соединений: [c.151]    [c.280]    [c.56]    [c.151]    [c.283]    [c.56]    [c.44]    [c.176]    [c.314]    [c.90]    [c.98]    [c.340]    [c.244]    [c.475]    [c.72]    [c.223]    [c.556]    [c.87]   
Начала органической химии Книга первая (1969) -- [ c.545 , c.550 , c.561 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.512 , c.516 , c.525 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрирование Восстановление

соединения гидрирование



© 2024 chem21.info Реклама на сайте