Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алифатические углеводороды, выделение из смеси

    Для извлечения из нефтяных фракций сульфидов многие исследователи пользовались водным раствором ацетата ртути, так как образующиеся комплексы сульфидов алифатического и цикланового строения растворимы в воде. Таким методом были получены сульфиды из иранской нефти [51]. Смесь сернистых соединений и ароматических углеводородов, выделенная из разбавленного водой кислого гудрона тракторного керосина иранской нефти, ректифицировали. Узкие фракции обрабатывали водным 0,7—1,0 М раствором ацетата ртути. К водному слою для разложения растворимых комплексов сульфидов добавляли горячий 5 н. раствор соляной кислоты. Сульфиды отделяли от водного слоя и нейтрализовали раствором щелочи. Производные тиофена, присутствовавшие во фракции, не растворялись в водном слое, а оставались в сернисто-углеводородной фазе. [c.119]


    Характерной особенностью асфальтенов является их склонность к ассоциации. По этой причине определения молекулярной массы асфальтенов разными традиционными способами дают сильно отличающиеся результаты [11]. Разные способы определения размеров ассоциатов асфальтенов дают тоже сильно отличающиеся результаты. Способность к ассоциации у асфальтенов обусловливают аномальные явления при течении нефти. Частицы асфальтенов в нефти окружены сольватным слоем из смол, ароматических и циклических углеводородов. В сольватном слое по мере удаления от частицы становится все больше алифатических углеводородов, так как имеет место постепенный переход к алифатическим компонентам, преобладающим в составе нефти. Сольватный слой является стабилизирующим фактором асфальтеновой частицы. Поэтому асфальтены, выделенные из нефти, способны самопроизвольно диспергироваться в ароматических и нафтеновых углеводородах. При большом избытке алифатических углеводородов происходит десорбция смол и ароматических углеводородов с асфальтеновых частиц и диффузия их в окружающую смесь углеводородов. Стабильность частиц уменьшается, они слипаются и выпадают в осадок. [c.83]

    В этой главе описаны реакции литийорганических соединений с органическими соединениями, обладающими подвижным водородным атомом — спиртами, фенолами и кислотами (кроме углеводородов и гетероциклических систем). Реакцию литийорганических соединений со спиртами, так же как с водой или разбавленными кислотами, обычно используют для разложения избытка литийорганического соединения но окончании реакции. Известно, что алифатические литийорганические соединения крайне энергично реагируют со спиртом (метиловым или этиловым). Для разложения остатков реакционной смеси в присутствии растворителя при синтезе алифатических литиевых соединений в углеводородных средах, например этиллития или к-бутиллития, не следует употреблять чистый спирт, так как может иногда произойти воспламенение паров растворителя. Часто используют для этой цели смесь спирта с бензолом или ксилолом. Разложение алифатических и ароматических соединений лития в присутствии эфира происходит довольно спокойно [1 ]. Алкоголиз навески или аликвотной пробы раствора в инертном углеводородном растворителе производят действием спирта в атмосфере аргона (методанализа, гл. 25). Эта реакция используется и для газового анализа алифатических соединений типа метиллития или этиллития (выделение метана или этана) [c.64]

    Таким образом, приведенные данные заставляют рассматривать моноциклоароматические углеводороды, выделенные хроматографическим методом из некоторых топлив, особенно из фракций с температурой кипения выше 200 ° С, как смесь, состоящую из ароматических углеводородов с насыщенными и ненасыщенными алифатическими цепями и наф-тено-ароматических углеводородов. [c.91]


    После выделения и концентрирования фракции ПАУ ее хроматографируют на колонке с оксидом алюминия, применяя в качестве элюента (подвижная фаза) циклогексан, бензол или их смесь (подробнее об этом см. раздел 7). Часто полученный экстракт сначала разделяют на отдельные фракции (ПАУ, алифатические углеводороды, органические соединения с функциональными группами и др.) методом ЖХ или ТСХ, а затем уже анализируют методом газовой хроматографии. В последнем случае результаты идентификации очень надежны, так как достигается высокая степень разделения ПАУ, особенно в случае использования капиллярных колонок, позволяющих разделять до 200—300 ПАУ или ПАС (полиароматические соединения с атомами азота, серы или кислорода). [c.145]

    В опубликованном нами сообщении [4] было отмечено, что при эпоксидировании аллилового спирта гидроперекисью третичного бутила в среде индивидуальных алифатических углеводородов, например, н-гексана, реакционная смесь расслаивается, что позволяет часть растворителя возвратить в процесс без выделения его ректификацией. Так как индивидуальные Се и выше парафины выпускаются промышленностью в небольшом количестве и сравнительно дороги, в качестве растворителей исследованы технические смеси углеводородов (табл. 1). [c.28]

    Для выделения газообразных углеводородов применяют методы сжатие (компрессия) с охлаждением, абсорбционно-десорбционный и адсорбционно-десорбционный (см. ч. I, стр. 271). Жидкости чаще всего разделяют перегонкой и ректификацией. Очень часто в промышленности практикуется комбинирование двух или более перечисленных методов. Используя разнообразные методы разделения исходных материалов, а также наиболее современные процессы их переработки, получают важнейшие соединения, являющиеся непосредственным сырьем органического синтеза синтез-газ (смесь СО и На) насыщенные алифатические углеводороды (от метана до пентанов) индивидуальные моноолефины (от Сз и выше) и их смеси диолефины бутадиен, изопрен и др. ацетилен ароматические углеводороды бензол, толуол, ксилолы и пр. [c.183]

    Наряду с реакциями галоидирования, в которых в качестве носителей радикальной цепи выступают не атомы галоида, а другие активные частицы, могут также протекать реакции, где носителями цепи являются атомы галоида, а в состав образующейся молекулы входят другие активные частицы. Одним из возможных примеров является реакция карбоксилирования, в которой используется хлористый оксалил. Эта реакция открыта Карашем и Брауном [150, 1511. Облучение ультрафиолетовым светом смеси циклогексана и хлористого оксалила (2 моля на 1 моль) при 30—35 приводит к выделению НС1 и СО и образованию хлорангидрида циклогексанкарбоновой кислоты по существу с количественным выходом, если исходить из использованного количества хлористого оксалила (55%). Подобным образом смесь циклогексана и хлористого оксалила (3 моля на 2 моля), нагретая в сосуде с обратным холодильником в присутствии 2,5 мол.% перекиси бензоила (считая на хлористый оксалил), приводит к образованию хлорангидрида с 65%-ным выходом. Ряд других алифатических углеводородов ведет себя аналогичным образом, поэтому Караш и Браун пришли к выводу, что во всех этих случаях протекает ценной процесс, инициированный фотодиссоциацией хлористого оксалила (или перекисью) и включающий такие стадии  [c.310]

    Еще один пример показан на рис. 8.29. В данном случае разделяли водную фракцию летучих веществ, выделенных из облученного говяжьего фарша. Смесь выделили из водного раствора с помощью эфира, а концентрирование эфирного раствора проводили при температуре —80 °С. Концентрированный раствор испаряли и потоком газа-носителя вводили в колонку, имеющую температуру —10 °С, и выжидали выхода всего содержащегося в смеси эфира. Колонка в данном случае была соединена с масс-спектрометром с быстрой разверткой, благодаря чему идентификацию веществ, выходящих из колонки, проводили по получаемым масс-спектрам. По окончании выхода из колонки эфира начинали программирование температуры. Анализ данной смеси показал, что она состоит в основном из углеводородов алифатического ряда и небольших количеств других веществ. Углеводороды с семью и более атомами углерода в молекуле обнаружили в водной фракции перегонки, а углеводороды с меньшим числом атомов углерода в молекуле — в летучей фракции. [c.279]

    При перегонке нефтяные кислоты распределяются по фракциям. Низшие фракции кислот (до Сб)-алифатические, а фракции С7—Сю-сме-си алифатических и нафтеновых с преобладанием последних. Кислоты, выделенные из лигроиновых, керосиновых и газойлевых фракций (Сю— j4) являются практически целиком нафтеновыми. Нафтеновые кислоты —С20 преобладают и в масляных дистиллятах. Им сопутствуют в этих случаях нафтено-ароматические и ароматические кислоты (5-15%), а иногда также и карбоновые кислоты гетероциклической структуры, например производные бензтиофена [1]. Многие представители гетероциклических кислот обнаружены в сырой нефти и в отдельных случаях их содержание может приблизиться к содержанию нафтеновых и нафтено-ароматиче-ских кислот [2]. Высокомолекулярные кислоты, выделенные из остаточных фракций нефти, могут представлять собой карбоксильные производные всех основных структур углеводородов исходной нефти [3]. [c.7]


    В качестве промывного агента предложено применять целый ряд соединений. Л. М. Розенберг с сотр. [25] рекомендует применять для промывки комплекса при количественном выделении и-парафинов изооктан, и-пентап либо их смесь. Предложены также изооктановая фракция [151], метилэтилкетон [53], депарафини-роваппая фракция 90—120° С [59] и другие бецзиновые фракции [46]. Рекомендовано также [148, 152] промывать комплекс насыщенным раствором карбамида, что позволяет достичь удовлетворительного удаления окклюдированных частиц и добиться значительного снижения температуры застывания депарафинируемого продукта. Предложено также [153] промывать комплекс жидким продуктом с высоким содержанием нормальных алифатических углеводородов, полученным от предыдущих циклов разрушения комплекса. В. В. Усачев и П. П. Дмитриев с сотр. [81] установили, что при разрушении комплекса, полученного из и-парафинов дизельного топлива, водой и насыщенным этанольным раствором карбамида при 80° С применение в качестве промывного агента бензола, серного эфира и легкого бензина с к. к. = 120° С (при промывке в интервале температур от +10 до —20° С) дает весьма близкие результаты, однако наиболее высокоплавкие -парафины получены при разрушении водо11 комплекса, предварительно промытого легким бензином при —20° С (табл. 20). [c.85]

    Из четырех смесей циклических сульфидов с моноциклическими ароматическими углеводородами одна смесь была полностью разделена, две частично и одну смесь разделить не удалось. Следовательно, циклические сульфиды труднее, чем алифатические сульфиды отделяются от гомологов бензола. Однако в ряде случаев возможно выделение циклических сульфидов из их смеси с гомологами бензола как однократным, так и повторным хроматермографированием. Смесь алифатических и циклических сульфидов также трудно отделить от моноциклических ароматических углеводородов. Однако и здесь при достаточном количестве повторных хроматермографиро-ваний возможно полное выделение алифатических и циклических сульфидов. [c.122]


Смотреть страницы где упоминается термин Алифатические углеводороды, выделение из смеси : [c.326]    [c.73]    [c.47]    [c.479]    [c.479]    [c.210]    [c.57]    [c.210]    [c.365]    [c.553]    [c.477]    [c.215]    [c.344]   
Руководство по газовой хроматографии (1969) -- [ c.0 ]

Руководство по газовой хроматографии (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение углеводородов

Углеводороды алифатические



© 2025 chem21.info Реклама на сайте