Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция под действием физических факторов

    Коагуляция под влиянием электролитов является наиболее типичным случаем коагуляции и обычно применяется в технике, когда необходимо разрушить коллоидную систему. Однако очень часто коагуляция обусловливается и другими, чисто физическими факторами — механическим воздействием на коллоидную систему, нагреванием или замораживанием золя, разбавлением или концентрированием. Коагуляция может также происходить под влиянием видимого и ультрафиолетового света, рентгеновских лучей, радиоактивного излучения, при действии электрического разряда и ультразвука. Наконец, разрушение системы может наступить спонтанно при длительном хранении коллоидной системы. К сожалению, особенности и механизм безэлектролитной коагуляции до настоящего времени изучены недостаточно. Между тем для понимания явления коагуляции во всех его аспектах, для составления верного представления о его существе подобные исследования могли бы дать очень много. Несомненно, что правильный взгляд на явление может быть установлен лишь при всестороннем его изучении, при подходе к нему с самых различных точек зрения. [c.308]


    КОАГУЛЯЦИЯ ПОД ДЕЙСТВИЕМ ФИЗИЧЕСКИХ ФАКТОРОВ [c.308]

    Характерная особенность примесей второй группы — их способность образовывать с водой сравнительно устойчивые коллоидные системы. При очистке воды от загрязнений такого рода основной задачей является разрушение коллоидной системы, обеспечение быстрой коагуляции дисперсных примесей и отделение их от дисперсионной среды. Коагуляцию коллоидных растворов могут вызывать различные факторы добавление растворов электролитов, изменение состава и концентрации дисперсной фазы, механические, электрические, световые, температурные и другие воздействия. Несмотря на кажущееся разнообразие перечисленных факторов, их влияние сводится в основном к изменению свойств поверхности дисперных частиц и условий взаимодействия между ними. Выяснение физической природы сил, действующих между коллоидными частицами, оценка относительной роли различных параметров в обеспечении стабильности коллоидной системы и определение условий ее нарушения — важнейшие вопросы, решение которых необходимо для целенаправленного изменения свойств дисперсных систем. [c.56]

    Коагуляция коллоидных систем под действием физических факторов. Коагуляция в результате механического воздействия наблюдается при механическом перемешивании коллоидных систем, при перекачке через трубопроводы, ири всасывании через распределительные устройства и т. д. Причины коагуляции обусловлены временным нарушением адсорбционного равновесия стабилизатора у поверхности коллоидных частиц. Это способствует сближению частиц на расстояние, где уже проявляются силы Ван-дер-Ваальса. Это подтверждается тем, что в коагуляте , полученном в результате механической коагуляции, стабилизатора содержится всегда меньше, чем в коагуляте нри коагуляции электролитами. [c.89]

    Существует несколько методов коагуляции дисперсных систем, целесообразность применения которых обусловливается действующими факторами устойчивости систем, а также экономическими соображениями. Поскольку методы коагуляции предполагают применение специальных веществ-коагуляторов, особенностью процесса является необходимость применения реагентов, не вызывающих вторичного загрязнения воды. К основным методам коагуляционной очистки относятся коагуляция электролитами, гетерокоагуляция, а также коагуляция под действием физических или химических факторов (перемешивание, нагревание, вымораживание и т. п.). [c.152]


    К основным методам коагуляционной очистки относятся [136, с. 301, 327, 328] коагуляция электролитами, гетерокоагуляция, в том числе взаимная коагуляция коллоидов, а также коагуляция под действием физических или химических факторов (перемешивание, нагревание, замораживание и др.). [c.90]

    Анализ основных закономерностей коагуляции латексов различными методами показывает, что не существует единственной причины их агрегативной устойчивости. Последняя определяется совокупным действием различных по физической природе факторов стабилизации. Относительная роль каждого из них зависит от молекулярного строения поверхности полимерных частиц и модифицирующих ее адсорбционных слоев эмульгаторов. В частности, механизм стабилизации латексов эмульгаторами определяется молекулярным строением последних, способностью к ионизации, гидрофобно-гидрофильным балансом и гидратацией, структурой и плотностью упаковки адсорбционных слоев, образуемых ими на поверхности латексных частиц. При этом следует иметь в виду, что свойства стабилизирующих адсорбционных слоев на поверхности латексных частиц изменчивы и зависят не только от перечисленных выше факторов, но и от внешних физических условий, в которых протекает коагуляция. С этим связано наличие многообразных особенностей протекания коагуляционного процесса, которые могут быть правильно поняты и оценены в их взаимосвязи с наиболее общими и фундаментальными закономерностями коагуляционных явлений. [c.220]

    Энергия взаимодействия частиц определяется балансом сил притяжения и отталкивания, зависящим в свою очередь от природы СИЛ и расстояния между частицами. Физическая теория устойчивости ионно-стабилизированных КОЛЛОИДНЫХ растворов основана на учете ван-дер-ваальсовых сил притяжения и электростатического отталкивания диффузных слоев адсорбированных ионов. Теория развита отдельно для сильно и слабо заряженных поверхностей в применении к разным дисперсным системам. Представляет ин-терес исследование не только коагуляции, но и значительно менее разработанного механизма пептизации, в частности понижения прочности агрегатов, образованных коагуляцией первичных частиц. Весьма актуальна разработка теории взаимодействия неионно-стаби-лизированных частиц, учитывающая действия сольватации, адсорбционных слоев ПАВ, полимеров и другие факторы устойчивости. Остается открытым вопрос о влиянии кинетических факторов на контактные взаимодействия. [c.8]

    Существование двойного электрического слоя на поверхности коллоидных частиц служит основным фактором устойчивости ионостабилизированных (лиофобных) золей. Как уже отмечалось, современная физическая теория устойчивости и коагуляции ионостабилизированных коллоидных систем основана на учете межмолекулярного притяжения и электростатического отталкивания, действующих между частицами золя. Согласно этой теории, коллоидная система устойчива в том случае, когда благодаря силам электростатического отталкивания (которые появляются при сближении коллоидных частиц и взаимном перекрытии их диффузных ионных атмосфер) возникает энергетический барьер, не позволяющий частицам подойти на расстояние, где преобладают силы молекулярного притяжения. Снижение энергетического барьера приводит к коагуляции системы. Полная энергия взаимодействия определяется алгебраической суммой энергии молекулярного притяжения и электростатического отталкивания. [c.135]

    Выше было отмечено, что для коагуляции в динамических условиях роль гидродинамического фактора гораздо более существенна, чем фактора поверхностных сил в теории ДЛФО. Однако было бы неправильным считать, что в динамических условиях коагуляции вообще не зависит от характера поверхности частиц. Эта зависимость проявляется, причем именно через гидродинамический фактор. Рассмотрим влияние на коагуляцию гидрофобизации поверхности частиц, в результате которой жидкость приобретает способность скользить по поверхности частиц. Наиболее правомочным является допущение [24], согласно которому тангенциальная скорость перемещения жидкости пропорциональна тангенциальному напряжению, действующему в этой точке, с коэффициентом проскальзывания , что и предполагалось при написании условий (1.5) и (1.6). Выше было показано, что проскальзывание жидкости необходимо учитывать, если 6ii >i /, где Ri — радиус кривизны поверхности частицы. Легко понять физический смысл величины ri , имеющей размерность длины. При течении жидкости через капилляр диаметром Dk ее расход в (1-)-8г1Р/1>к) раз больше, чем при полном прилипании к стенкам капилляра, т. е. скольжение эквивалентно уширению капилляра на величину порядка ri . Сила гидродинамического сопротивления движению отдельной сферической частицы при 6ri i o отличается от силы, определяемой по формуле (1.3) (при условии 6Ti i o) лишь числен- [c.21]



Смотреть страницы где упоминается термин Коагуляция под действием физических факторов: [c.142]    [c.22]    [c.142]    [c.142]    [c.70]   
Смотреть главы в:

Курс коллоидной химии -> Коагуляция под действием физических факторов

Курс коллоидной химии -> Коагуляция под действием физических факторов




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

Коагуляция физическая

Коагуляция физических факторов

Факторы физические



© 2025 chem21.info Реклама на сайте