Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярное притяжение

    Поверхностная теория, предложенная Риттингером, исходит из того, что при измельчении работа расходуется на преодоление сил молекулярного притяжения по поверхностям разрушения материала, т. е. по вновь образующимся при измельчении поверхностям. Отсюда следует, что работа, необходимая для измельчения, пропорциональна вновь образующейся поверхности измельчаемого материала. [c.452]

Рис. VI. 14. К выводу уравнения для энергии молекулярного притяжения между пластинами. Рис. VI. 14. К <a href="/info/1390269">выводу уравнения</a> для <a href="/info/593327">энергии молекулярного</a> притяжения между пластинами.

    Теория кинетики быстрой коагуляции создана польским ученым Смолуховским. Основные положения, из которых исходил СмолуХовскии, сводятся к тому, что между частицами золя действуют силы притяжения и отталкивания последние ослабевают при введении электролита и при концентрации электролита, вызывающей быструю коагуляцию, исчезают вовсе. Дальнейшее прибавление электролита не может ускорить коагуляцию. Частицы такого астабилизованного золя при сближении в процессе броуновского движения на достаточно близкое расстояние слипаются под давлением сил молекулярного притяжения, образуя агрегат, который совершает в дальнейшем броуновское движение как одно целое. Природу сил, действующих между частицами, Смолуховский не рассматривал. [c.261]

    Как известно [171—173, 216—227], в зоне контакта двух фаз, например жидкости и твердого тела, действуют поверхностные силы, такие, как силы прилипания, поверхностного натяжения, молекулярного притяжения. Поэтому граничный слой жидкости, связанный с материалом мембраны, по структуре и, следовательно, по физико-химическим свойствам, может значительно отличаться от подобных характеристик жидкости в объеме. Так, граничные слои полярных жидкостей вблизи гидрофильных поверхностей (на расстоянии 10- —10- мкм) обладают [c.200]

    Под знаком суммы второго члена этого уравнения могут находиться такие внешние силы, как гравитационные, молекулярного притяжения, электростатические, а также силы, возникающие в результате воздействия на каплю несущего потока [13]. Последний член уравнения представляет собой реактивную силу, сообщаемую капле отходящими парами. Для расчетов тепло- и массообмена в вихревом газовом потоке преимущественное значение имеют центробежная сила (Рц) и сила вязкого сопротивления среды (F ), как наиболее важные по интенсивности действия и определяющие характер движения капли. Тогда суммарное воздействие сил, приложенных к капле, с учетом названных сил запишется следующим образом  [c.176]

    Измельчением называют процесс деления твердого тела на части, при котором путем приложения внешних сил преодолеваются силы молекулярного притяжения в измельчаемом твердом теле и образуются новые поверхности. [c.449]

    Все физико-механические свойства таких систем (вязкости, модули, критические напряжения) обусловлены тем, что сложные структурные единицы разделены прослойками неструктурированной жидкости, через которые действуют силы молекулярного притяжения, резко ослабленные расстоянием. [c.34]

    Зародыш Надмолекулярное образование в любом агрегатном состоянии, способное к самостоятельному существованию и характеризующееся бесконечно малыми значениями поверхностной энергии и толщины граничного слоя, прилегающего к поверхности раздела фаз, лавинообразно изменяющихся в зависимости от параметров. Склонны к молекулярному притяжению, электрическому отталкиванию, а также взаимодействию за счет структурных сил гидрофобного притяжения  [c.54]


Рис. VI. 15. Зависимость энергии электростатического отталкивания 11 , энергии молекулярного притяжения и суммарной энергии взаимодействия частиц (пластин) от расстояния. Рис. VI. 15. <a href="/info/362272">Зависимость энергии</a> <a href="/info/105832">электростатического отталкивания</a> 11 , <a href="/info/593327">энергии молекулярного</a> притяжения и суммарной <a href="/info/660552">энергии взаимодействия частиц</a> (пластин) от расстояния.
    При адсорбции газов н паров на поверхности адсорбентов образуется не только мономолекулярный, но и полимолекулярный адсорбционный слой. Такая адсорбция возможна, если адсорбционные силы действуют на расстояниях, превышающих размеры молекул. Этим свойством обладают силы Ван-дер-Ваальса. Энергия молекулярного притяжения U пары молекул убывает, как известно, ио закону U=—Л/г , где г — расстояние между центрами молекул и А — константа, зависящая от природы молекул. [c.40]

    Системы, в которых действует адсорбционно-сольватный фактор, могут быть агрегативно устойчивы даже при практическом отсутствии электрического потенциала на поверхности частиц. Та-Кие системы значительно менее чувствительны к добавлению электролитов. Действие электролитов в этих системах подобно высаливанию ими в растворах неэлектролитов, т. е. сводится только к уменьшению активности растворителя (воды). Особенно большую роль адсорбционно-сольватный фактор приобретает в системах с неполярными средами, где возможности диссоциации, и соответственно образования двойного электрического слоя проявляются слабо. Для создания количественной адсорбционно-сольватной теории устойчивости напрашивается проведение аналогий с теорией ДЛФО. Однако если энергию притяжения в системах с адсорбционно-сольватным фактором устойчивости можно определить исходя из представлений Гамакера и де Бура, то количественная оценка энергии гидратации, выступающая в роли энергии отталкивания частиц, до сих пор не разработана. Для оценки агрегативной устойчивости в обсуждаемых системах часто используют толщину адсорбционного слоя, равную половине расстояния между частицами, на котором энергия молекулярного притяжения уменьшается до величины кТ. [c.338]

    Предположение, что смолы адсорбируются поверхностью кристаллов парафинов, в результате чего происходит стабилизация дисперсной фазы адсорбционными слоями, не может считаться приемлемым. Хотя адсорбционная теория действия поверхностноактивных веществ может объяснять основные явления, наблюдающиеся в парафинистых нефтепродуктах, тем не менее предполагать, что адсорбция смол происходит на гранях кристаллов парафина, не приходится это может быть только на ребрах кристаллов, где поле молекулярного притяжения имеет максимальную интенсивность. Все это в достаточной мере подтверждается описанными выше опытами кристаллизации парафинов из раствора масла в пропане в присутствии асфальтенов несмотря на то, что масла содержали, помимо асфальтенов, также и смолы, последние при охлаждении раствора не препятствовали росту кристаллов и собиранию их в друзы. Однако, изложенные выше на- [c.101]

    Рассматриваемые силы молекулярного притяжения, вызываемые взаимодействием электронных оболочек, на много порядков превосходят силы притяжения масс молекул по закону тяготения (для межмолекулярных расстояний). [c.68]

    Решение. Для ответа на этот вопрос необходимо рассчитать энергию связи частиц и длину связи Гд (расстояние между связанными частицами). Если заданы параметры электростатического отталкивания (ij)o, и, е) и молекулярного притяжения (Л), то можно рассчитать и построить график потенциальной энергии взаимодействия частиц I/(Л) и из него найти и r = 2a- -h . [c.224]

    Согласно современной теории ДЛФО между частицами дисперсной фазы действуют силы молекулярного притяжения и силы отталкивания. Баланс этих сил (энергий) определяет результат встречи двух частиц дисперсной фазы. [c.115]

    Пользуясь уравнением (УП.б), получают выражения для энергии молекулярного притяжения сферических частиц радиуса г  [c.117]

    Закон молекулярного притяжения всего проще проявляется при взаимодействии пары молекул в отсутствие других молекул, которые могут изменять силу молекулярного притяжения. Как было показано впервые с помощью квантовой механики Лондоном, сила притяжения Fu меняется обратно пропорционально седьмой степени расстояния г между молекулами, а молекулярная энергия Um притяжения — обратно пропорционально шестой степени расстояния  [c.269]

    Образование на поверхиости частиц суспензии ДЭС, создающего электростатическое отталкивание между частицами дисперсной фазы. Следует, одиако, иметь в виду, что молекулярное притяжение для крупных частиц суспензии проявляется на более далеких расстояниях, чем в случае коллоидных частиц (дисперсионные силы обладают свойством аддитивности) поэтому [c.127]

    Молекулярная теория трения была предложена Дезагюлье более 100 лет назад, а развитие получила только в XX в. в трудах Гарди, Томлинсона, Дерягина и других ученых [236]. Наибольший вклад в разработку этой теории внес Б. В. Дерягин. В соответствии с его теорией трение в случае гладких поверхностей вызывается молекулярной шероховатостью, т. е. силами отталкивания электронных оболочек контактирующих тел, а силы прилипания, или молекулярного притяжения, должны рассматриваться как поправки, объясняющие отклонения от закона Амонтона . Формула, удовлетворительно подтверждающая эту теорию, имеет вид [c.224]


    Рис, VII.и. Потенциал парного взаимодействия частиц ( /с —энергия связи, Ло—координата вторичного энергетического минимума, Аа —радиус действия сил молекулярного притяжения) [c.195]

    Молекулярные силы притяжения. Прежде всего следует рассмотреть силы молекулярного притяжения, действующие между поверхностями любых тел, как одинаковой, так и различной природы. [c.269]

    Значение / м (взятое со знаком минус) выражает слагающую расклинивающего давления П , зависящую от молекулярного притяжения. , [c.271]

    Табором и другими учеными были измерены силы притяжения твердых тел при значениях ширины зазора, доходивших до 50 А, и для малой ширины зазора была обнаружена зависимость согласно формуле (IX, 26), выражающей молекулярное притяжение при условии отсутствия электромагнитного запаздывания. Для большинства твердых и жидких тел значения константы А лежат в интервале 10 — 10- 2 эрг. [c.272]

    На рис. IX, 6 изображена потенциальная кривая для частиц, находящихся в вакууме, газе или жидкости, не содержащей стабилизующих ионов и не образующей сольватного слоя. Левая часть кривой показывает, что при малых значениях Н энергия молекулярного взаимодействия изменяется обратно пропорционально второй степени расстояния. В правой части кривой при сравнительно больших значениях Н энергия молекулярного притяжения из-за электромагнитного запаздывания изменяется обратно пропорционально третьей степени расстояния. Расположение всей кривой ниже оси абсцисс свидетельствует о том, что при отсутствии стабилизующего фактора сблизившиеся частицы неизбежно должны слипнуться. В реальных условиях это отвечает двум частицам аэрозоля или двум полностью стабилизованным частицам лиозоля. Скорость коагуляции таких систем определяется только временем, необходимым для сближения частиц друг с другом в результате броуновского движения,  [c.278]

    Впрочем некоторые исследователи считают, что на поверхности частиц часто (в основном для лиофильных частиц) существует один или несколько слоев молекул дисперсионной среды, которые никогда не выдавливаются из зазора, образующегося между сталкивающимися частицами. Это, согласно их мнению, происходит потому, что энергия десорбции этих молекул больше кинетической энергии движущихся частиц. Наличие прослоек прочно связанной среды толщиной порядка 6—10 А мешает частицам сближаться на такое расстояние, на котором энергия молекулярного притяжения становится очень большой. Это приводит к качественному изменению вида взаимодействия. Согласно классической [c.280]

    Таким образом, адсорбционный слой, представляющий нечто иное, как структурно-механический барьер, влияет на взаимодействие частиц, не устраняя их притяжения. Следовательно, адсорбционные пленки не должны были бы привести к повышению устойчивости системы. Однако если Кг-а = О, то молекулярным притяжением между пленками можно пренебречь. В то же время стабилизующие пленки могут являться препятствием, мешаюш,им тесному сближению частиц. Если частицы не могут приблизиться друг к другу, то молекулярные т-и- о i силы притяжения между ними будут Схема взаимодействия малы, поскольку расстояние велико. Это частиц, стабилизованных полислоями и приводит к повышению устойчивости. поверхностно-активного вещества  [c.285]

    В основе современной теории устойчивости и коагуляции дис дерсной системы, учитывающей силы молекулярного притяжения и электростатического отталкивания, лежат представления,разработанные Б. В. Дерягиным и Л. Д. Ландау [12]. [c.6]

    Рассмотрим зависимость от расстояния энергии притяжения частиц — молекуляриой составляющей расклинивающего давлс ния. Из сил Ван-дер-Ваальса наиболее универсальными и существенными силами притяжения являются лондоновские силы дисперсионного взаимодействия. Как уже отмечалось, дисперсионное взаимодействие слабо экранируется, и поэтому взаимодействие между частицами легко определить суммированием взаимодействий между молекулами или атомами в обеих частицах, например, с помощью интегрирования. Такой приближенный расчет в предположении аддитивности межмолекулярных (межатомных) взаимодействий был проведен де Буром и Гамакером. Для вывода уравнения энергии молекулярного притяжения между частицами воспользуемся уравнением энергии притяжения одной молекулы (атома) к поверхности адсорбента (в данном случае частицы), приведенном в разд. III. А, посвященном адсорбции (111.6)  [c.328]

    При Л =0 сольватация также равна нулю. В частности, это имеет место для любой границы раздела внутри фазы. Введение указанной терминологии согласуется с развитыми Дерягиным представлениями о сольватации пограничных слоев жидкости, а также со взглядами П. А. Ребиндера [34] и других авторов. Положительное расклинивающее давление препят- гтвует сближению поверхностей (Дерягин), но наряду с этим существует отрицательное расклинивающее давление, которое представляет собой силы молекулярного притяжения поверхностей, лишенных сольватной оболочки (Ребиндер). [c.8]

    Особенности поляризации в полярных средах связаны с диффуэно-стью двойного слоя, проявляющейся даже при дипольной структуре межфазной границы, индуцирующей вторичные диффузные слои в глубине обеих фаз. Учет поляризационных сил особенно важен при построении физической картины злектрокоагуляции, в технологии разделения систем с полярными средами, в том числе и очистки природньгх и сточных вод. Устойчивость дисперсной системы в электрическом поле зависит от знака и величины суммарной энергии взаимодействия, обусловленной энергией молекулярного притяжения, ионно-электростатической энергией отталкивания и энергией диполь-дипольного притяжения [43].  [c.15]

    В жидкой фазе формируется двойной электрический слой. Двойной электрический слой может образоваться на поверхностях раздела жидкой и твердой фаз несколькими путями в зависимости от химического состава твердой фазы. Первый путь обусловлен адсорбцией ионов из раствора и наблюдается в том случае, когда на поверхности твердого тела имеется их избыток. При этом создается электростатическое поле, и ионы, находящиеся в жидкой фазе на расстоянии радиуса сферы молекулярного притяжения, адсорбируются твердым телом. При этом адсорбируются прежде всего ионы, способные достраивать кристаллическую решетку. Если таковых нет, то наблюдается избиральная адсорбция ионов большей валентности и меньшего радиуса. Эти ионы образуют на поверхности твердой фазы неподвижный адсорбционный слой. Так, например, в различных цеолитах, [c.111]

    Согласно взглядам, изложенным в работе [180], низкомолекулярные парафиновые углеводороды (пропан, бутан, петролейный эфир и др.) растворяют адсорбированные на поверхности асфальтенов смолистые и ароматические углеводороды. По Б. В. Дерягину [57], при разбавлении дисперсионной среды парафиновыми углеводородами сольватная оболочка сжимается, что также приводит к снижению толщины адсорбированного слоя вокруг частиц н при их столкновении — к коагуляции. При сближении две одноименно заряженные частицы испытывают одновременно действи1 двух противоположных сил молекулярного притяжения и электростатических сил отталкивания. Устойчивость коллоидных систем, в том числе и нефтяных остатков, зависит от соотношения этих сил, изменение которых достигается природой сольвента, добавляемого в коллоидную систему. Введение в систему ароматических углеводородов, склонных к адсорбции на поверхности асфальтенов, способствует повышению толщины сольватных оболочек, что приводит к возрастанию расклинивающего эффекта и предохраняет частицы от слипания. [c.57]

    В результате адсорбции (накопления газо- или парообразных веществ на поверхности поглотителя) частицы сильно сближаются, что облегчает реакцию. А. Беллани приписывал адсорбцию молекулярным притяжениям в связи с электрическими силами. В том же году другой итальянский ученый Э. Фузиньери при опытах с раскаленной платиной пришел к заключению, что каталитическая сила проявляется тем сильнее и отчетливее, чем тоньше распределена масса металла. Эта сила более заметна на углах и ребрах кристаллов, чем на гладкой поверхности. [c.90]

    Гамакер, основываясь иа представлении об аддитивности и ненасыщаемости дисперсионных сил, показал, что энергия молекулярного притяжения двух тел, представляющих собой плоские 8 115 [c.115]

    В формуле (VI 1.59) и других величина имеет смысл максимальной величины силы Pv. действующей вдоль траектории 5 смещения частицы и необходимой для преодоления силы сцепления двух частиц (рис. VII.20). При сдвиговой деформации 3 в sin0 раз меньше, чем сила притяжения частиц, действуьэщая вдоль линии центров частиц. Если исходить из закона молекулярного притяжения сферических частиц U = — Klh, где —константа и /1—расстояние между поверхностями сфер, то получим [c.212]

    Аналогично меняется характер кривых с изменением концентрации электролита. Таким образом, применяя указанные выше диаграммы, исследование агрегативной устойчивости коллоидных систем сводят к рассмотрению баланса сил молекулярного притяжения и электростатическсТго отталкивания. [c.276]

    На рис. IX, 7 изображены кривые, соответствующие сближению мицелл обычного ионностабилизованного лиозоля, у которого частицы несут двойной электрический слой. Как можно видеть, картина здесь гораздо более сложная. Кривая 1 характеризует изменение энергии молекулярного притяжения между частицами, причем она сходна с кривой, изображенной на рис. IX, 6. Кривая 2 характеризует изменение энергии электрического отталкивания между двойными электрическими слоями частиц и поэтому она расположена над осью абсцисс. [c.279]

    Кривая 3 является результирующей потенциальной кривой, построенной на основании первых двух путем геометрического сложения их ординат. При больших расстояниях между частицами результирующая кривая лежит под осью абсцисс (вторичная неглу-, бокая потенциальная яма или дальний потенциальный минимум ). Между частицами наблюдается некоторый перевес сил молекулярного притяжения, обусловленный тем, что эти силы убывают по степенному закону, а силы электростатического отталкивания — по экспоненциальному. При средних расстояниях, отвечающих толщине эффективных ионных оболочек (порядка 100 нм), кривая лежит над осью абсцисс, образуя энергетический барьер. Это значит, что на этом расстоянии превалируют силы электростатического отталкивания. Наконец, при более близких расстояниях опять начинают преобладать силы притяжения, и этот участок кривой снова лежит под осью абсцисс (первичная потенциальная яма или ближний потенциальный минимум). Для частиц, не обладающих способностью к коалесценции, первичный минимум обусловлен компенсацией молекулярных сил притяжения борцовскими силами отталкивания. [c.279]

    Наличие глубокой потенциальной ямы на потенциальной кривой слева от положительного максимума объясняет механическую прочность коагулята. Частицы на близких расстояниях прочно связываются друг с другом в результате действия ван-дер-ваальсовых сил, и образовавшиеся агрегаты приобретают некоторые свойства твердого тела. Минимум потенциальной кривой, расположенный в области отрицательных значений энергии взаимодействия, очевидно, объясняется уравновешиванием силы молекулярного притяжения силой отталкивания электронных оболочек (силы Борна) и отвечает физическому контакту обеих частиц. Это наиболее устойчивое состояние системы, в котором она обладает наименьшей свободной энергией. [c.280]

    Сольватные оболочки образуются на границе раздела фаз. Между сольватными оболочками отсутствует молекулярное притяжение, поскольку сила взаимодействия молекул слоя практически равна силе взаимодействия молекул среды. При сближе ии, частиц необходимо совершить работу, расходуемую на удаление сольватного слоя (работа десорбции), что приводит к появлению значительных сил отталкивания между частицами. Наиболее убедительно подтверждают существование граничных слоев с особой структурой исследования Б. В. Дерягина, Н. В. Чураева, С. В. Нерпина, Ю. М. Поповского, М. С. Мецика, Г. М. Зорина и др. [c.281]


Смотреть страницы где упоминается термин Молекулярное притяжение: [c.186]    [c.189]    [c.223]    [c.104]    [c.325]    [c.329]    [c.116]    [c.357]    [c.266]    [c.278]   
Смотреть главы в:

Новый справочник химика и технолога Электродные процессы Химическая кинетика и диффузия Коллоидная химия -> Молекулярное притяжение


Курс коллоидной химии (1976) -- [ c.269 ]

Очистка воды коагулянтами (1977) -- [ c.32 ]




ПОИСК







© 2025 chem21.info Реклама на сайте