Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция причины

    Нейтрализационная коагуляция наблюдается у зо-лей СО- слабо заряженными частицами, обладающими сравнительно низкими значениями фо-потенциа ла. В этом случае коагуляция происходит обычно у золей при снижении электрического заряда частиц из-за уменьшения вследствие тех или иных причин адсорбции потенциалопределяющих ионов. В результате уменьшения заряда электрические силы отталкивания между частицами ослабевают, частицы при сближении слипаются и выпадают в осадок  [c.290]


    Что такое коагуляция Объясните причины коагуляции. [c.57]

    Пены и эмульсии — это дисперсные системы, которые состоят соответственно из газа, диспергированного в жидкости, и жидкости, диспергированной в другой жидкости. В отличие от золей, представляющих собой частицы твердого вещества, диспергированного в жидкости, пены и эмульсии характеризуются тем, что межфазная граница в них разделяет два вещества, обладающие текучестью. По этой причине форма частиц в этих системах определяется условием минимума поверхности при данном объеме. В разбавленных пенах и эмульсиях частицы дисперсной фазы приобретают сферическую форму. При более высокой концентрации дисперсной фазы ее частицы вследствие взаимного сжатия деформируются, образуя определенного вида полиэдры (в монодисперсных системах образуются правильные гексаэдры). Процесс разрушения дисперсной системы в пенах и эмульсиях не ограничивается только слипанием частиц (коагуляцией), но может продолжаться до полного их слияния, т. е. коалесценции. [c.221]

    Повышение температуры рабочих растворов приводит к уменьшению времени коагуляции и забиванию желобков формующего конуса — вместо шариков получаются бесформенные лепешки геля. Причины — нарушение нормальной работы холодильников узла формования или аммиачно-холодильной установки. Если проверка холодильников не устранит повышение температуры, следует остановить формование. [c.55]

    Физические явления, протекающие в аэрозоле при воздействии акустических волн, весьма многообразны. Отдельная частица, взвешенная в газе, вовлекается в колебательное движение, на нее действует давление звукового излучения, вызывая ее дрейф, она вовлекается в движение акустическими течениями и т. д. Между отдельными частицами возникает гидродинамическое взаимодействие. Перечисленные явления могут служить причиной сближения частиц и их коагуляции. [c.134]

    Теоретическое значение константы коагуляции при стандартных условиях для воздуха при 25°С и давлении 100 кПа и при условии, что 5 = 2, оно составляет 0,51-10 м с, что блестяще соответствует данным, полученным для аэрозолей стеариновой и олеиновой кислоты, которые практически монодисперсны и не несут электрических зарядов. Разница в значениях константы, полученных для других аэрозолей, которая всегда больше теоретической величины, объясняется следующими причинами  [c.516]

    Попадание хлористого кальция (с пластовыми водами или выбуриваемой породой) приводит к коагуляции промывочной жидкости (возрастает водоотдача, изменяются вязкость, СНС, pH) и часто служит причиной осложнений, в том числе и вследствие осыпей и обвалов глинистых пород. [c.64]


    Явление взаимной коагуляции золей имеет чрезвычайно широкое распространение в природе и в целом ряде технологических процессов. Так, взаимная коагуляция происходит при смешении морской и речной воды. При этом ионы солей морской воды адсорбируются на заряженных коллоидных частицах речной воды, в результате чего происходит их коагуляция. По этой причине на дне постепенно скапливаются большие количества ила, река мелеет, образуется множество мелей и островков. [c.369]

    Расслоение нефтяных дисперсных систем связано со сложными физическими и химическими превращениями, происходящими при определенных условиях, и как следствие ассоциацией и коагуляцией компонентов системы. Такими компонентами в товарных маслах могут являться присадки различных классов. Кроме этого, во время эксплуатации и хранения масла загрязняются механическими примесями и водой, в них образуются и накапливаются продукты окисления. Указанные продукты приводят к необратимому изменению качества масел, причинами которого, в частности, является помутнение масла или выпадение в осадок отдельных компонентов или присадок товарного масла. Для предотвращения этих нежелательных явлений необходимо знание количественных закономерностей ассоциации и мицеллообразования присадок, условий взаимодействия присадок между собой и компонентами базовых масел. [c.269]

    Увеличение пересыщения приводит, однако, к увеличению общего числа частиц, а следовательно, как будет видно при более подробном рассмотрении процессов коагуляции (гл. 7), вызывает нарастание скорости их агрегации (коагуляции). По этой причине в любой реакции осадкообразования существуют оптимальные условия получения коллоидного продукта. Подбор этих оптимальных условий происходит обычно эмпирическим путем, так как теоретическое рассмотрение процесса слишком сложно. [c.10]

    В нем участвуют только растворенные молекулы. По этой причине для коллоидных систем гораздо большее значение имеет непосредственное слипание частиц при соударениях. Этот процесс называется коагуляцией или флоккуляцией. Если дисперсная фаза золя жидкая или газообразная (эмульсин или пены), то процесс может продолжаться до слияния отдельных капель и пузырьков, т. е. до коалесценции. Любое соединение частиц, наступающее при коагуляции, приводит к изменению состояния коллоидной системы и в этом смысле нарушает ее устойчивость. Вот почему Песков, говоря об агрегативной устойчивости коллоидных систем, подразумевал под этим отсутствие коагуляции. Если процесс агрегации частиц, связанный с коагуляцией золя, происходит в достаточно высокой степени, то система теряет свою устойчивость по отношению к действию сил тяжести и коллоидные частицы седиментируют. [c.193]

    Интенсифицирующее влияние АК на процессы коагуляции, седиментации и фильтрования чаще всего объясняют взаимной коагуляцией противоположно заряженных коллоидных частиц кремниевой кислоты и гидроокиси алюминия. Причина ускорения [c.148]

    Влияние pH. Характеристики динамических мембран в значительной степени зависят от pH обрабатываемых растворов. При изменении pH меняется ионообменная способность заряженных мембран, что отражается на степени задержания различных ионов. Например, мембраны, образованные полиакриловой кислотой, в щелочной среде обладают значительно большей селективностью по Na l и Na2S04, чем по Mg b, поскольку Mg2+ является многовалентным противоионом [98]. В кислой среде мембрана переходит в нейтральную форму и наблюдается противоположная картина. Влияние pH является существенным и по той причине, что большинство мембранообразующих добавок представляет собой коллоидные системы, а в зависимости от pH может наблюдаться изменение размера коллоидных частиц, их растворение или коагуляция. [c.89]

    Коагулирующая способность электролита характеризуется минимальной концентрацией с,г, при которой начинается быстрая коагуляция. Так как при повышении концентрации электролита переход от медленной коагуляции к быстрой происходит постепенно, то концентрация с г не может быть определена очень четко. По этой причине невозможно строго количественно сравнивать значения с г, полученные разными методами и разными авторами. [c.195]

    Объясните, почему электрические заряды, адсорбировавшиеся на поверхности частиц золя, предотвращают коагуляцию и в чем причина подобного же действия ПАВ. [c.304]

    Размер и свойства поверхности аморфного осадка зависят от многих причин. Характер осадка в значительной степени обусловлен его специфическими, индивидуальными свойствами. Прежде всего это сказывается на степени связи частицы со средой. В коллоидной химии различают два типа коллоидов гидрофильные н гидрофобные . Гидрофобные осадки сравнительно слабо адсорбируют молекулы воды и выпадают в виде более плотных масс, порошков и хлопьев. Гидрофобные осадки занимают меньший объем и сравнительно хорошо отделяются фильтрованием. Примером этой группы осадков может быть сернистый мышьяк и др. сульфиды металлов . Для этой группы осадков электролиты сравнительно легко и быстро вызывают количественную коагуляцию. [c.60]


    Фрейндлих, создатель адсорбционной теории коагуляции, считал, что причиной антагонизма является способность одного иона понижать адсорбционную способность, а следовательно, и коагулирующую силу другого иона. [c.302]

    В сильно разбавленных дисперсных системах коагуляция протекает очень медленно только по причине малой вероятности столкновения частиц, С повышением концентрации дисперсной фазы частота столкновений увеличивается и для получения агрегативно устойчивых систем требуется их стабилизировать — предотвратить слипание частиц при их случайных столкновениях. [c.135]

    Процессы медленной коагуляции пока весьма слабо изучены. Предполагают, что медленное протекание процесса коагуляции обусловливается тем, что лишь очень небольшое число столкновений коллоидных частиц приводит к их слипанию (агрегации). Установлено, что слипаются лишь те частицы, у которых по какой-либо. причине снизился до критического значения дзета-потенциал, или частицы, обладающие большой скоростью и при столкновении попадающие н сферу взаимного притяжения. [c.375]

    Коагуляция коллоидных систем под действием физических факторов. Коагуляция в результате механического воздействия наблюдается при механическом перемешивании коллоидных систем, при перекачке через трубопроводы, ири всасывании через распределительные устройства и т. д. Причины коагуляции обусловлены временным нарушением адсорбционного равновесия стабилизатора у поверхности коллоидных частиц. Это способствует сближению частиц на расстояние, где уже проявляются силы Ван-дер-Ваальса. Это подтверждается тем, что в коагуляте , полученном в результате механической коагуляции, стабилизатора содержится всегда меньше, чем в коагуляте нри коагуляции электролитами. [c.89]

    Положительный максимум (энергетический барьер) на кривой, отвечающий средним расстояниям, является причиной того, что при медленной коагуляции не все частицы слипаются друг с другом при сближении. Если энергия, соответствующая высоте энергетического барьера, меньше или хотя бы одного порядка со средней кинетической энергией движущихся частиц, то частицы, очевидно, смогут преодолеть электростатические силы отталкивания, сблизиться на очень малое расстояние, где превалируют молекулярные силы притяжения, и слипнуться. Если же энергетический барьер высок, частицы не смогут его преодолеть и образовать агрегаты. Понятно, что если каким-либо способом, например, прибавляя электролит в систему, снизить толщину двойного электрического слоя и тем самым уменьшить силы отталкивания настолько, чтобы энергетический барьер исчез полностью, частицы при сближении должны обязательно слипнуться. [c.280]

    Коагуляция коллоидных систем может происходить под влиянием ряда факторов — старения системы, изменения концентрации дисперсной фазы, изменения температуры, механических воздействий, света и т. д. Однако наиболее важное теоретическое и практическое значение имеет коагуляция при добавлении электролитов. В нашем курсе мы подробно остановимся только на коагуляции электролитами и лишь вкратце коснемся других причин коагуляции. [c.286]

    На скорость образования и свойства полученного геля весьма сильно влияет температура. Время образования геля по тем же причинам, что и время коагуляции, при повышении температуры уменьшается. Однако с повышением температуры в результате увеличения интенсивности броуновского движения лиофобные гели могут переходить в структурированную жидкость, а затем, при еще [c.316]

    В основу теории ДЛФО было положено предположение, что в силу термодинамической неустойчивости лиофобных золей их агрегатив-ная устойчивость может иметь лишь кинетический характер, а устойчивое состояние следует трактовать как замороженное состояние с практически нулевой скоростью коагуляции. Причиной такой устойчивости является то, что в коллоидных растворах в отличие от обычных молекулярных или истинных растворов дальнодействующие поверхностные силы способны при определенных условиях создавать достаточно высокий потенциальный барьер, резко уменьшающий вероятность сближения частиц или даже практически целикомисклю-чающий зту возможность. Поэтому важнейшее место в решении задачи об устойчивости любого либфобного золя теория ДЛФО отводит анализу силовых и потенциальных кривых получаемых суперпозицией электростатического отталкивания и молекулярного притяжения. [c.260]

    Из рассмотренного материала вытекает, что понятие устойчивости пленкиобразующей дисперсии требует предварительной конкретизации типа коагулирующего воздействия. Например, достаточно устойчивые к электролитам дисперсии могут быть одновременно неустойчивыми к термокоагуляции, а устойчивые к термокоагуляции — неустойчивыми к замораживанию и т. д. В некоторых случаях, например при хранении, возможно воздействие одновременно нескольких факторов коагуляции. Причины изменений, происходящих в дисперсиях при длительном хранении и приводящие к потере ими устойчивости вплоть до полной коагуляции, могут быть химическими и коллоидно-химическими. К первым относятся процессы гидролиза полимера (например, в случае дисперсий полихлоропрена и поливинилацетата), окислительной сшивки (латексы бутадиен-сти-рольных сополимеров и полибутадиена), биоразрушения ПАВ и др. Ко вторым относятся процессы медленной коагуляции, смещения адсорбционного равновесия при уплотнении осадков в расслаивающихся дисперсиях, гетерокоагуляция в смешанных дисперсиях и т. д. [c.28]

    Рассмотрим агрегатную форму процесса кристаллизации парафинов. Явление агрегатной кристаллизации наблюдается в основном для высококипящих мелкокристаллических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Высококипящие высокомолекулярные парафины дают при кристаллизации весьма мелкую кристаллическую структуру. По величине образуюпщеся кристаллики парафина приближаются, особенно для многих тяжелых продуктов остаточного происхождения, к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кристалликов парафина, проявляют ряд свойств, присущих коллоидным системам, — нанример аномалию вязкости, дают явления, аналогичные гелеобразованию, и др. К числу таких свойств относится способность микрокристаллической взвеси собираться нри определенных условиях в скопления или агрегаты, как это происходит нри коагуляции коллоидных растворов. Одной из причин такой коагуляции (точнее агрегации) является выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих ч оединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют такж . и электростатические явления. [c.74]

    К числу очень мало разъясненных явлений необходимо отнести образование хлопьев из смол, образующихся при смешивании мазута с пирогенетической смолой. Вероятно, здесь действуют какие-то причины, вызывающие коагуляцию коллоидного раствора. Вопрос вовсе не освещен литературой, но есть, впрочем, указание (551) на загустевание каменноугольного скрубберного маела при смешивании его с парафиновым маслом, соляровым, даже с бензолом. Бензолом можно разделить этот густой осадок на жидкую и твердую состава  [c.397]

    С целью выяснения причин плохой воспроизводимости процесса полимеризации и самопроизвольной коагуляции была изучена возможность замены в рецепте получения латекса СКД-1 эмульгатора (некаля на омыленный контакт Петрова. Контакты являются лучшими новерхностноактив-ными веществами по сравнению с некалем, однако содержащиеся в них масла сильно снижают эмульгирующие свойства. [c.142]

    Процесс образования гелей является, как указано выше, одним из видов коагуляции. Образовакпс гелей мелеет быть вызвано различными причинами — действием электролитов, изменением температуры и др. Некоторые лиофильные коллоидные системы застудневают при низкой температуре и разжижаются при высокой, другие— наоборот. Многие коллоидные системы способны застудневать дах е при очень малых концентрациях дисперсной фазы. [c.198]

    Явление агрегатной кристаллизации наблюдается в основном у высококипящих мелкокристалл ических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Как уже отмечалось выше, высококипящие высокомолекулярные парафины образуют при кристаллизации мелкую кристаллическую структуру. По величине образующиеся кристаллики парафина приближаются (особенно для многих тяжелых продуктов остаточного происхождения) к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кргисталликов парафина, характеризуются некоторыми свойствами, присущими коллоидным системам. Например они проявляют аномалию вязкости, способны к явлениям, аналогичным гелеобразованию, и др. К таким свойствам относится и способность микрокристаллической взвеси образовывать в определенных условиях агрегаты, как это происходит при коагуляции коллоидных растворов. Одна из причин такой агрегации — выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих соединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют и электростатические явления. [c.93]

    По мере насыщения адсорбционных слоев их прочность возрастает, при этом стабилизирующее действие адсорбционных слоев достигает мак-С1у 1ума. Способность молекул мигрировать в пределах насыщенного адсорбционного слоя обеспечивает восстановление дефектов, возникающих по тем или иным причинам в адсорбционном слое, что приводит к их большей устойчивости. Для разрушения препятствующих коагуляции частиц оболочек (адсорбционных слоев) необходимо внешнее механическое вмешательство или применение химических веществ - деэму-п ьторов. [c.9]

    Теория Штерна. В 1924 г. Штерн предложил схему строения двойного электрического слоя, в которой он объединил схемы Гельмгольца — Перрена и Гуи — Чэпмена. Разрабатывая теорию двойного электрического слоя, Штерн исходил из двух предпосылок. Во-первых, он принял, что ионы имеют конечные, вполне определенные размеры и. следовательно, центры ионов не могут находиться к поверхности твердой фазы ближе, чем на расстоянии ионного радиуса. Вд-втррых, Штерн учел специфическое, не электрическое взаимодействие ионов с поверхностью твердой фазы. Это взаимодействие обусловлено наличием на некотором малом расстоянии от поверхности поля молекулярных (адсорбционных) сил. Как будет показано при обсуждении причин устойчивости и коагуляции коллоидных систем, молекулярные силы, действующие между телами, состоящими из множества молекул, вследствие своей аддитивности являются относительно дальнодействующими. [c.184]

    Коагуляция в результате механического воздействия наблюдается при интенсивном перемешивании коллоидных систем, при перекачке их по трубопроводам и т. п. Причины коагуляции при механическом воздействии обусловлены, вероятно, временным нарушением адсорбционного баланса стабилизатора у поверхности коллоидных частиц. Такие й ггайяЛизованные частицы получают возможность сближаться на расстояние действия молекулярных сил и вследствие этого слипаются друг с другом. Доказательством такого механизма коагуляции служит тот факт, что в коагуляте,, полученном в результате механической коагуляции, стабилизатора содержится всегда меньше, чем в коагуляте, получаемом при коагуляции электролитами. [c.309]

    Шоу и Вервеем при исследовании монодисперсных и иолистироль-ных латексов установлено (частное сообщение), что константа скорости для наиболее быстрой коагуляции значительно изменяется при изменении концентрации частиц (уменьшается при увеличении концентрации) и размера частиц (уменьшается при увеличении радиуса). Значения Ко, найденные для указанных латексов, колеблются от и ниже, являясь, таким образом, меньшими, чем теоретическое значение 5-10 . Причина этого отклонения не совсем ясна, однако можно предполагать, что экспериментальные значения будут приближаться к теоретическим при экстраполировании к бесконечному разбавлению. [c.107]

    Из всего вышесказанного не следует делать вывод о том, что основная причина коагуляции заключается в достижении некоторого постоянного для всех случаев критического дзета-потенциала. Исследования последних лет, проведенные советскими учеными В. В. Дерягиным и его сотрудниками, показали, что коагулирующее действие электролитов заключается не столько в непосредственном уменьшении сил отталкивания между коллоидными частицами через понижение дзета-потенциала, сколько в том, что изменение строения двойного электрического слоя и сжатие диффузной его части, обусловленное прибавлением электролита-коагулянта, влечет за собой понижение расклинивающего действия гидратных (сольватных) оболочек диффузных ионов, разъединяющих коллоидные частицы. Иными словами, необходимое для коагуляции данного золя понижение расклинивающего действия (или давления) сольватных оболочек достигается уменьшением диффузного слоя противоионов, что ведет к соответствующему понижению величины дзета-потен-адиала. [c.371]

    При замораживании, по Люттермозеру, причиной коагуляции гидрозоля является отнятие воды от дисперсной фазы в результате вымораживания. Коагулирование успешнее протекает при замораживании всей массы золя. В этих условиях вследствие увеличения объема в замороженной системе развиваются большие давления. Спрессованные частички дисперсной фазы приходят друг с другом в контакт и слипаются. [c.89]

    Прежде чем перейти к обсуждению причин устойчивости и коагуляции лиозолей, рассмотрим теорию кинетики коагуляции, которая, кстати говоря, была разработана гораздо раньше 1 рии устойчивости коллоидных систем. [c.261]

    Представления о молекулярных силах притяжейия и электростатических силах отталкивания лежат в основе современной теории устойчивости и коагуляции ионностабилизованных коллоидных систем. Однако существуют и иные причины устойчивости коллоидных систем. Так, устойчивость коллоидных систем с жидкой дисперсионной средой может быть обусловлена образованием на, поверхности частиц достаточно развитых сольватных слоев из молекул дисперсионной среды. Способность подобных сольватных оболочек препятствовать слипанию частиц П. А. Ребиндер объясняет тем, что оболочки обладают сопротивлением сдвигу, мешающим их выдавливанию из зазора между частицами, а также тем, что на границе сольватного слоя и свободной среды отсутствует сколько-нибудь заметное поверхностное натяжение. По Б. В, Дерягину, причина неслипания двух сольватированных частиц при их сближении заключается в возникновении расклинивающего давления, обусловленного отличием структуры- граничных сольватных слоев от свойств объемной фазы. [c.281]

    Авторами предлагались различные теории коагуляции электролитами. Сюда относятся химическая теория коагуляции (Дюкло), адсорбционная теория (Фрейндлих), электростатическая теория (Мюллер, А. И. Рабинович, В. А. Каргин). Однако все они по тем или иным причинам утратили свое значение и представляют сейчас только исторический интерес. В настоящее время общепризнанной является физич Ская.-теория коагуляции электролитами, базирующаяся на о5щих принципах статистической физики, теории растворов и теории действия молекулярных сил. Физическая теория [c.289]

    Концентрационная коагуляция наблюдается обычно у золей с сильно заряженными частицами при увеличении концентрации тдиффе Тного электролита в системе. Это обстоятельство пойбляет в пер м приближении вовсе не учитывать возможное изменение фо-потенциала при различного рода адсорбционных или десорбционных явлениях. Единственной причиной коагуляции системы в этом случае является, согласно теории ДЛФО, чисто электростатический эффект сжатия двойного электрического слоя..  [c.292]


Смотреть страницы где упоминается термин Коагуляция причины: [c.260]    [c.28]    [c.314]    [c.48]    [c.62]    [c.39]    [c.40]    [c.135]    [c.207]    [c.297]    [c.304]   
Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.154 ]

Руководство к практическим занятиям по коллоидной химии Издание 4 (1961) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

причины



© 2025 chem21.info Реклама на сайте