Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция физическая

    Коагуляция под влиянием электролитов является наиболее типичным случаем коагуляции и обычно применяется в технике, когда необходимо разрушить коллоидную систему. Однако очень часто коагуляция обусловливается и другими, чисто физическими факторами — механическим воздействием на коллоидную систему, нагреванием или замораживанием золя, разбавлением или концентрированием. Коагуляция может также происходить под влиянием видимого и ультрафиолетового света, рентгеновских лучей, радиоактивного излучения, при действии электрического разряда и ультразвука. Наконец, разрушение системы может наступить спонтанно при длительном хранении коллоидной системы. К сожалению, особенности и механизм безэлектролитной коагуляции до настоящего времени изучены недостаточно. Между тем для понимания явления коагуляции во всех его аспектах, для составления верного представления о его существе подобные исследования могли бы дать очень много. Несомненно, что правильный взгляд на явление может быть установлен лишь при всестороннем его изучении, при подходе к нему с самых различных точек зрения. [c.308]


    КОАГУЛЯЦИЯ ПОД ДЕЙСТВИЕМ ФИЗИЧЕСКИХ ФАКТОРОВ [c.308]

    Введение. Некоторые явления, связанные с коллоидным состоянием вещества, известны уже очень давно. Еще в 1751 г. М. В. Ломоносов в своих записях по физической химии указывал Свертыванием мы называем перевод жидкости легкоподвижной в густую и густой жидкости в мягкое твердое тело, произведенный без заметного выпаривания. Пример мы видим в сваренных яйцах и в свернувшемся молоке . В первой части его сочинения Опыт физической химии имеются указания о свертывании (коагуляции) растворов. [c.503]

    Введение электролита в раствор сильно повышает общую концентрацию находящихся в нем ионов, что создает благоприятные условия для поглощения заряженными коллоидными частицами ионов противоположного знака. Таким образом, первоначальный заряд частиц уменьшается до критического значения и золь коагулирует. Так объясняет механизм коагуляции электростатическая теория. По-другому трактует процесс коагуляции физическая теория, созданная Б. В. Дерягиным. Согласно ее представлениям между двумя твердыми частичками в золе образуется жидкостная пленка, оказывающая расклинивающее действие и тем самым препятствующая их сближению. Расклинивающее действие быстро возрастает с утончением пленки и сильно зависит от присутствия электролитов. При введении в дисперсную систему электролита происходит изменение прочности разделяющих частицы пленок, приводящее к нарушению стабильности золя. В момент коагуляции коллоидных частиц они должны сблизиться на такое расстояние, при котором энергия их взаимного притяжения, обусловлен- [c.85]

    Теоретические представления о причинах, обусловливающих устойчивость лиофобных золей, получили дальнейшее развитие в работах Б. В. Дерягина и Л. Д. Ландау. Согласно теоретическим воззрениям и экспериментальным данным Дерягина, пленка жидкости, заключенная между двумя погруженными в нее твердыми телами, оказывает на них расклинивающее давление и тем самым препятствует их сближению. Действие быстро возрастает с утончением пленки и в большой степени понижается от присутствия электролитов. С этой точки зрения коагуляции частичек препятствует расклинивающее действие разделяющих их пленок. Введение электролитов в золь приводит к изменению двойного электрического слоя, сжатию его диффузной части и изменению прочности разделяющих частицы пленок и, тем самым, к нарушению стабильности золя. Стройно развитая математическая теория стабильности и коагуляции Дерягина и Ландау приводит к строгому физическому обоснованию правила валентности Шульце — Гарди и вместе с тем подводит физическую основу под эмпирические закономерности, обнаруженные Оствальдом. [c.341]


    В системах со сложной колебательной структурой (пористые тела, псевдоожиженный слой) возможно возбуждение резонансов отдельных элементов. В ряде случаев существенный эффект достигается при временной или пространственной локализации энергии. Выбор подобных воздействий может быть проведен как по спектральным, так и по переходным (временным) характеристикам. Избирательные электрофизические свойства различных смесей и композиций (диэлектрические и магнитные) могут послужить основой для выбора вида электромагнитного воздействия прц ускорении процессов типа разделения. В отдельных процессах эффект может достигаться лри определенном сочетании воздействий. Эффективность различных технологических процессов, например фильтрации и коагуляции, приобрела в последние годы большое значение не только как операций извлечения целевых продуктов, но и вследствие остроты экологических проблем. Физические методы дают надежду выхода из тупиковых на сегодняшний день ситуаций. Многообразие систем, процессов и воздействий не [c.110]

    Коагуляция и осаждение. Различные физические воздействия существенно влияют на процессы в гидро- и аэродисперсных системах. Из перечисленных ранее свойств подобных систем видно, что они весьма чувствительны и к акустическим, и к электромагнитным воздействиям. [c.133]

    Физические явления, протекающие в аэрозоле при воздействии акустических волн, весьма многообразны. Отдельная частица, взвешенная в газе, вовлекается в колебательное движение, на нее действует давление звукового излучения, вызывая ее дрейф, она вовлекается в движение акустическими течениями и т. д. Между отдельными частицами возникает гидродинамическое взаимодействие. Перечисленные явления могут служить причиной сближения частиц и их коагуляции. [c.134]

    Некоторые исследователи установили, что у органозолей с достаточно большой диэлектрической проницаемостью среды обнаруживаются явления электрофореза и существует известная корреляция между электрофоретической подвижностью частиц и устойчивостью этих систем. Таким образом, в органозолях, так же, как и в гидрозолях, коллоидные частицы могут нести двойной электрический слой и обладать -потенциалом. Установлено также, что во многих случаях для органозолей справедливы закономерности, которым подчиняются и гидрозоли. К ним приложимо правило Шульце—Гарди, при их коагуляции наблюдаются явления аддитивности и антагонизма при действии ионов и т. д. Таким образом, есть все основания считать, что к золям с неводной дисперсионной средой с известными коррективами приложима физическая теория коагуляции. [c.306]

    Такие свойства жидкости, как поверхностное натяжение, влияют на коагуляцию частиц и их осаждение, поэтому при проектировании сепараторов их необходимо учитывать. Химические свойства веществ не имеют никакого значения для сепарации их частиц. Например, разница в химических свойствах гликоля и нефти не влияет на их сепарацию, хотя физические характеристики этих веществ могут оказать существенное влияние на осаждение их частиц в сепараторе. [c.86]

    Великовский указывает, что действительно, как правило, химически нестабильные смазки в результате окисления значительно уплотняются, однако часто уплотнение является следствием только физических и коллоидных процессов коагуляция, испарение воды могут привести к резким изменениям в консистентности смазки. [c.730]

    Большое значение, видимо, имеет способность масел удерживать в коллоидном состоянии нерастворимые продукты окисления, часто определяемая термином диспергирующая способность . Термин этот недостаточно точно передает физическую сущность явления, так как речь здесь идет не о диспергирующей способности в буквальном смысле этого слова, а о способности масла не допускать коагуляцию образующихся в нем нерастворимых продуктов окисления точнее это явление можно было бы определить термином агрегативная устойчивость . Собственно диспергирующей способностью, т. е. способностью переводить грубодисперсную систему в тонкодисперсную или диспергировать, смывать с деталей двигателя уже образовавшиеся отложения, ни сами масла, ни даже наиболее эффективные моющие присадки не обладают. [c.356]

    Изменение объема бентонита, набухшего в растворе электролита, может быть объяснено физической теорией коагуляции электролитами, т. е. концентрационной коагуляцией (сжатие диффузного слоя). [c.241]

    Расслоение нефтяных дисперсных систем связано со сложными физическими и химическими превращениями, происходящими при определенных условиях, и как следствие ассоциацией и коагуляцией компонентов системы. Такими компонентами в товарных маслах могут являться присадки различных классов. Кроме этого, во время эксплуатации и хранения масла загрязняются механическими примесями и водой, в них образуются и накапливаются продукты окисления. Указанные продукты приводят к необратимому изменению качества масел, причинами которого, в частности, является помутнение масла или выпадение в осадок отдельных компонентов или присадок товарного масла. Для предотвращения этих нежелательных явлений необходимо знание количественных закономерностей ассоциации и мицеллообразования присадок, условий взаимодействия присадок между собой и компонентами базовых масел. [c.269]

    Коагуляция коллоидных систем под действием физических факторов. Коагуляция в результате механического воздействия наблюдается при механическом перемешивании коллоидных систем, при перекачке через трубопроводы, ири всасывании через распределительные устройства и т. д. Причины коагуляции обусловлены временным нарушением адсорбционного равновесия стабилизатора у поверхности коллоидных частиц. Это способствует сближению частиц на расстояние, где уже проявляются силы Ван-дер-Ваальса. Это подтверждается тем, что в коагуляте , полученном в результате механической коагуляции, стабилизатора содержится всегда меньше, чем в коагуляте нри коагуляции электролитами. [c.89]


    К воздействиям, обусловливающим коагуляцию, относятся нагревание, замораживание, интенсивное перемешивание и прежде всего введение в раствор очень небольших количеств электролитов (коагуляторов). При этом существенно, что коагуляция под влиянием электролитов происходит и тогда, когда коагуляторы химически не взаимодействуют с коллоидно растворенным веществом. Таким образом, коагуляция является не химическим, а физическим процессом. [c.11]

    Впервые качественный подход к изучению устойчивости золей наметили Кальман и Вильштеттер в 1932 г. Первые количественные расчеты были произведены Б. В. Дерягиным в конце 30-х годов и затем завершены в работе Б. В. Дерягина и Л. Д. Ландау (1941 г.). Аналогичный подход к изучению устойчивости коллоидных систем в дальнейшем был развит и в работах голландских исследователей Фервея, и Овербека. По начальным буквам основных авторов возникшей физической теории коагуляции эту теорию теперь часто называют теорией ДЛФО. [c.290]

    Физическая теория коагуляции электролитами Б. В. Депягина бази-руется на общих принципах статистической физики, теории растворов и теории действия молекулярных сил. Устойчивость или неустойчивость дисперсной системы в этой теории выводится из рассмотрения молекулярных сил и сил электрического отталкивания, действующих между частичками. При рассмотрении коагуляции коллоидных систем следует различать нейтрализационную коагуляцию, при которой потеря устойчивости происходит в результате разряжения коллоидных частичек и уменьшения их -потенциала. и концентрационную коагуляцию, при которой потеря устойчивости связана не с палением -потенциала, а вызвана сжатием диффузного двойного слоя. Большое количество электролита будет достаточно для понижения энергетического барьера, что обеспечит начало коагуляции. В этом случае начальная скорость коагуляции тем больше, чем больше было добавлено в золь электролита, а следовательно, чем больше был снижен энергетический барьер. Это область астабилизованного золя. Коагуляция, при которой не все столкновения частичек кончаются их сцеплением, условно названа медленной коагуляцией. Коагуляция, при которой все стол, но-вения кончаются слипанием, называется быстрой коагуляцией. [c.90]

    Физическая теория устойчивости и коагуляции электролитами. Проанализируем, как изменяется энергия взаимодействия в зависимости от расстояния между двумя частицами. Построим графики, характеризующие отдельно энергию притяжения и энергию отталкивания как функции расстояния. Общую энергию взаимодействия можно получить сложением ординат. На рис. 44 показаны такие графики, часто называемые потенциальными кривыми. При их построении придержи- [c.110]

    Рассмотрим кратко те современные сведения, которые имеются о коагуляции золей, происходящей под влиянием наиболее важных физических факторов.  [c.308]

    Наиболее типичный процесс для коллоидных систем — коагуляция, т. е. слипание отдельных агрегатов под действием межмолекулярных (не химических) сил. Такие процессы, как физическая адсорбция, электрофорез и т. д., также являются физическими. При взаимодействии коагулятора (вещества, вызывающего коагуляцию) со стабилизатором (веществом, обеспечивающим агрегативную устойчивость системы), а также при получении коллоидных растворов происходят химические реакции. Таким образом, коллоидная химия, как и физическая химия, строится на основе двух наук — химии и физики — с преобладанием второй. В связи с этим коллоидную химию можно было бы переименовать в физическую химию гетерогенных высокодисперсных систем. Связь между физической и коллоидной химией вполне очевидна. При этом обе дисциплины связаны не только между собой, но и с химией неорганической, аналитической, органической, биологической, фармацевтической, а также со специальными дисциплинами. Все они пользуются физико-химическими закономерностями и физико-химическими методами для решения общих и конкретных задач. [c.5]

    На основании общих модельных предста влений Б. В. Дерягиным совместно с Л. Д. Ландау была развита количественная теория коагуляции и устойчивости дисперсных систем. Основу этой физической теории составляет учет молекулярных сил Ван дер Ваальса взаимодействия между коллоидными частичками и электростатического отталкивания двойных электрических слоев этих частичек при их перекрытии. Задача, таким образом, сводится к расчету баланса сил сцепления и сил отталкивания между коллоидными частичками. [c.80]

    Новая теория устойчивости и коагуляции благодаря строгой физической трактовке явлений приобретает широкое значение в развитии науки о коллоидах. [c.123]

    Коагуляция наступает при значениях, лежащих ниже некоторой величины -потенциала (около 30 мВ). Это так называемый критический потенциал. Различают концентрационную коагуляцию при действии ионов с зарядами, равными 1, когда изменяется ионная сила раствора, и коагуляцию нейтрализациониую ионами с зарядами более 1, когда заметно снижается ф-потенциал. Физическая теория нарушения агрегативной зстойчивости основана на представлении о соотношении спл при- д тяжения и отталкивания прп сближении одноименно за,ряженных коллоидных частиц. При столкновении коллоидных частиц в результате броуновского движения на них действуют взаимное молекулярное притяжение, обусловленное ван-дер-ваальсо-выми силами. Сближению препятствует электростатическое отталкивание, возникающее лишь прн перекрытии диффузных слоев Ах и Ач коллоидных частиц (область Ло на ряс. 62, а). При малом расстоянии между частицами силы притяжения преобладают над сп-ламп броуновского движеиия, в результате частицы слипаются. [c.267]

    Теория предсказывает линейную зависимость Ig от Ig (рис. 101), подтверждаемую экспериментально. Выход кривой на горизонтальный участок соответствует с — и переходу в зону быстрой коагуляции. Интересно отметить, что горизонтальные ветви отвечают значениям и <1. Физический смысл этого результата соответствует тому, что скорость коагуляции в силовом поле I7 < О (скат в яму ) оказывается большей, чем при быстрой коагуляции в отсутствие поля. [c.258]

    Следует подчеркнуть всю условность термина коллоидная химия . Коллоидные системы представляют собою системы, содержащие в виде дисперсных частиц не молекулы, а агрегаты молекул. Наиболее типичный процесс для коллоидных систем — коагуляция сводится к слипанию этих агрегатов в еще более крупные под действием межмолекулярных а не химических сил. Другие процессы, характер[ьГё для коллоидных систем (физическая адсорбция, электрофорез и т. д.), также являются в основном физическими или физико-химическими. Лишь при взаимодействии коагулятора со стабилизатором (веществом, находящимся в виде адсорбционного слоя на поверхностн коллоидных частиц и [c.13]

    Явление тиксотропии объясняется разрывом контактов, образующих структуру геля, с последующим обратимым их восстановлением в процессе броуновского движения частиц. Поэтому физический смысл 0 близок к периоду медленной коагуляции и определяется скоростью диффузии, а также высотой энергетического барьера. Величины 0 для реальных систем могут составлять доли секунды и десятки часов. Строгой количественной теории [c.281]

    Явление тиксотропии объясняется разрывом контактов, образующих структуру геля, с последующим обратимым их восстановлением в процессе броуновского движения частиц. Поэтому физический смысл 0 близок к периоду медленной коагуляции и определяется скоростью диффузии, а также высотой энергетического барьера. Значения 0 для реальных систем могут составлять ка доли секунды, так и десятки часов. Строгой количественной теории тиксотропии до настоящего времени не существует, несмотря па огромное практическое значение этого явления. [c.275]

    Интересно отметить, что горизонтальные ветви отвечают значениям < 1. Физический смысл этого результата соответствует тому, что скорость коагуляции в силовом поле и <0 (скат в яму ) оказывается большей, чем при быстрой коагуляции в отсутствие поля. [c.273]

    Полученные данные подтверждают возможность распространения физической теории на первую стадию коагуляции латексов электролитами. Константа сил ван-дер-ваальсова притяжения частиц в этой коллоидной системе, как следует из полученных [28— 30] данных, зависит ог степени насыщенности адсорбционных оболочек до состояния их, близкого к насыщению [41]. [c.257]

    Термообработка микросфер. При формовании в процессе коагуляции золя в гель мицеллы соединяются в более крупные агрегаты и вырастают в нити, переплетаюпщеся в густую сеть. Киселеобразная масса цревращается в желеобразную, а жидкость (дисперсионная среда золя) исчезает и размещается в ячейках — порах, образованных мицеллами. Поверхность геля становится упругой, гель приобретает характер твердого тела с определенной физической структурой, сопротивляющейся деформации. [c.57]

    Физические воздействия в виде электрических и акустических полей существенно влияют на движение частиц и, следовательно, на вероятность их столкновения. При определенных энергиях частиц, получаемых ими в полях, они могут сближаться, преодолевая.рервый глубокий потенциальный барьер, образуя устойчивую систему. Этот вопрос применительно к коагуляции гидрозолей в ультразвуковом поле был рассмотрен Г. А. Мартыновым и Д. С. Лычниковым [34]. Таким образом, рассматриваемые воздействия могут оказывать влияние и на вторую груйпу факторов. [c.134]

    Применимость теории Дерягина для описания стабильности и коагуляции дисперсий в неполярных средах, содержащих поверхностно-активные вещества, успешно обосновал Парфит. Дальнейшее развитие физическая теория устойчивости получила также в работах В. М. Муллера. [c.13]

    Вторичное сырье, попадая из печи в камеру, расслаивается, с одной стороны, под действием сил, направленных к созданию вспученной массы (в основном состоящей из асфальтенов), и с другой,— под действием сил, обусловливающих коагуляцию карбенов, карбоидов и асфальтенов. В результате над слоем коксующейся массы всегда имеется вспученная масса, состоящая в основном из асфальтенов, при закоксовыванни которых получается асфальте-новый кокс (фракция менее 25 мм), характеризующийся повышенной зольностью и сернистостью (см. табл. 7). Это обстоятельство обусловливает физическую и химическую неоднородность кокса в камере. На практике наблюдается образование на разных стадиях трех слоев кокса нижнего — на начальной стадии коксования (периодический процесс) среднего — на второй стадии (непрерывный процесс) и верхнего — после отключения камеры от потока сырья (также периодический процесс). Разнородность в свойствах кокса по высоте реакционной камеры можно значительно устранить, вводя в камеру дополнительное количество тепла извне (например, введением горячих газов, перегретого пара, горячего потока нефтепродуктов). [c.96]

    Новую физическую теорию устойчивости и коагуляции коллоидов разработал Дерягин совместно с Ландау. Сущность ее заключается в следующем. Две одноименно заряженные коллоидные частицы, сближаясь, испытывают одновременное действие, двух противоположных сил молекулярных сил притяжения Q (вандерваальсовых, лондоновских) и электростатических сил отталкивания Р, препятствующих слипанию частиц. Энергия межмолекулярного притяжения проявляется на расстоянии, соизмеримом с радиусом самих частиц. На больщих расстояниях она меньше энергии броуновского движения и поэтому не имеет существенного значения. У сблизившихся частиц энергия межмолекулярного притяжения резко возрастает. [c.118]

    Термин регенерация (regeneration, repro essing) относится к восстановлению качества отработанного смазочного материала до уровня свежего. Его используют применительно к очистке смазочных материалов (в основном не содержащих присадок), предварительно слитых из оборудования. При этом свойства отработанных продуктов полностью восстанавливаются и их вновь можно использовать по прямому назначению. Для проведения регенерации применяют более сложные физические и химические процессы — коагуляцию, сернокислотную и адсорбционную очистку. Часто регенерацию осуществляют на месте потребления смазочного материала. [c.285]

    Следует заметить, что взаимодействие частиц на больших расстояни 1х, характеризуемое наличием на потенциальной кривой неглубокого отрицательного минимума, до сих пор не имеет специального названия. Ученые называют это взаимодействие по разному дальней коагуляцией, коагуляцией во вторичном минимуме, дальней агрегацией, флокуляцией. В дальнейшем мы будем пользоваться всеми этими терминами за исключением флокуляции, поскольку термии флокуляция имеет чйсто описательный характер (образование хлопьев, фло-кул) и не зависит от того, происходит ли она в результате истинной коагуляции или дальйей агрегации. Термином коагуляция будем обозначать все виды агрегации частиц, начиная от коалесценции и непосредственного слипания частиц и кончая дальней агрегацией. Наконец, под истинной коагуляцией будем пбнимать непосредственный физический контакт между частицами. [c.279]

    Авторами предлагались различные теории коагуляции электролитами. Сюда относятся химическая теория коагуляции (Дюкло), адсорбционная теория (Фрейндлих), электростатическая теория (Мюллер, А. И. Рабинович, В. А. Каргин). Однако все они по тем или иным причинам утратили свое значение и представляют сейчас только исторический интерес. В настоящее время общепризнанной является физич Ская.-теория коагуляции электролитами, базирующаяся на о5щих принципах статистической физики, теории растворов и теории действия молекулярных сил. Физическая теория [c.289]

    Первая количественная теория коагуляции смесями электролитов была развита Ю. М. Глазманом на основе современной физической теории коагуляции лиофобных золей. Согласно этой теории антагонизм ионов (а также противоположный эффект — синергизм) для сильно заряженных золей есть следствие электростатических взаимодействий в диффузных атмосферах коллоидных частиц, а для слабо за яженных золей может обусловливаться конд - куршхаЁ шайов..аа-м 1.а. видсорбшн.онном слое. [c.302]

    Рядом авторов теоретически разработаны и экспериментально подтверждены представления о силах ван-дер-ваальсова притяжения коллоидных частиц. Притяжение молекул, обусловленное ван-дер-паальсовыми силами, складывается из трех компонентов ориентационного, индукционного и дисперсионного (лондоновского) эффектов. Наиболее универсальными являются дисперсионные силы, которые приобретают особое значение при взаимодействии коллоид-1ГЫХ частиц. Поскольку дисперсионные силы мало экранируются, т. е. мало зависят от присутствия соседних молекул, в отличие от других сил молекулярного притяжения, взаимодействие между коллоидными частицами получается суммированием дисперсионного притяжения между всеми молекулами, образующими обе частицы. Поэтому силы молекулярного (дисперсионного) притяжения коллоидных частиц простираются на значительные расстояния и могут вызвать слипание сблизившихся частиц. С позиций физической кинетики молекулярное притяжение частиц является основной причиной коагуляции системы, ее агрегативной неустойчивости. [c.96]

    Правило Дерягина — Ландау, выведенное авторами на основе представлений физической теории коагуляции, позволяет определить значение порога быстрой коагуляции, которое соответствуе г исчезновению энергетического барьера па кривой общего взаимодействия КОЛ.ПОИДНЫХ частиц в зависимости от расстояния между ними. Рассчитанные но данному правилу значения порога коагуляции не всегда совпадают с экспериментальными значениями вследствие того, что коагулирующее действие ионов зависит не только от валентности, но и от специфической адсорбции, не учитываемой приведенным выше уравнением. [c.105]


Смотреть страницы где упоминается термин Коагуляция физическая: [c.174]    [c.164]    [c.131]    [c.303]   
Курс коллоидной химии (1976) -- [ c.289 ]

Физико-химия коллоидов (1948) -- [ c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Дерягин коагуляции, физическая

Коагуляция

Коагуляция коллоидных систем под действием физических факторов

Коагуляция под действием физических факторов

Коагуляция физических факторов

Физическая теория коагуляции

Физическая теория устойчивости и коагуляции электролитами



© 2025 chem21.info Реклама на сайте