Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение жидкости и газа в насадочных абсорберах

    Барботажные тарельчатые аппараты обладают более высоким гидравлическим сопротивлением потоку газа, чем насадочные, но позволяют легче достичь равномерного распределения жидкости по сечению абсорбера при больших диаметрах аппаратов. [c.195]

    Для загрузки и выгрузки колец, а также для осмотра распределителей в аппарате имеются люки. В процессе эксплуатации происходит усадка и частичное разрушение керамических колец Рашига, что приводит к значительному увеличению гидравлического сопротивления аппарата и снижению его эффективности, В абсорберах больших диаметров (4,5- 5 м) одной из основных причин, снижающих эффективность аппарата, является неравномерное распределение потоков газа и жидкости по сечению колонны. В насадочном абсорбере, работающем при давлении 2,45 МПа, имеются три слоя насадки высотой каждый [c.82]


    Распределение жидкости и газа в насадочных абсорберах [c.425]

    Насадочные абсорберы получили наибольшее применение в промышленности. Эти абсорберы представляют собой колонны, заполненные насадкой - твердыми телами различной формы. В насад очной колонне 1 (рис. 16-9, д, б) насадка 3 укладывается на опорные решетки 4, имеющие отверстия или щели для прохождения газа и стока жидкости, которая достаточно равномерно орошает насадку 5 с помощью распределителя 2 и стекает по поверхности насадочных тел в виде тонкой пленки вниз. Однако равномерного распределения жидкости по всей высоте насадки по сечению колонны обычно не достигается, что объясняется пристеночным эффектом. Вследствие этого жидкость имеет тенденцию растекаться от центральной части колонны к ее стенкам (рис. 16-10). Из этого рисунка следует, что жидкость практически полностью оттесняется от места ввода абсорбента к периферии колонны на расстоянии, равном четырем-пяти ее диаметрам. Поэтому часто насадку в колонну загружают секциями высотой в четыре-пять диаметров (но не более 3-4 метров в каждой секции), а между секциями (слоями насадки) устанавливают перераспределители жидкости 5 (рис. 16-9,6 и 16-11), назначение которых состоит в направлении жидкости от периферии колонны к ее оси. [c.58]

    Необходимо отметить, что первоначальное распределение жидкости не сохраняется при дальнейшем ее течении по насадке. Как правило, восходящий газовый поток занимает центральную область слоя насадки, оттесняя жидкость к его периферии. Неравномерность распределения встречных потоков газа и жидкости по сечению абсорбера приводит часто к тому, что действительная поверхность контакта обеих взаимодействующих фаз меньше геометрической поверхности насадки и, следовательно, реальная массообменная способность насадочного абсорбера меньше потенциально возможной. Для некоторого уменьшения неравномерности распределения потоков часто прибегают к разделению слоя насадки в абсорбере на несколько секций при помощи перераспределительных устройств, состоящих из промежуточных решеток с конусными фартуками (см. рис. Х-1, б). [c.460]

    На эффективность насадочных абсорберов оказывают большое влияние диаметр и высота слоя насадки, определяемые указанным выше методом по скорости газа и требуемой поверхности массообмена. Расчет последней производится по коэффициентам массопередачи при помощи приведенных выше формул, полученных путем обобщения опытных данных для аппаратов малого диаметра (преимущественно не более 0,5 м). Практика показывает, что применительно к промышленным аппаратам рассчитанные коэффициенты массопередачи оказываются Завышенными и, следовательно, поверхности массообмена — заниженными. Это, расхождение, являющееся следствием неравномерного распределения жидкости и газа по сечению аппарата, а также их продольного перемешивания, часто довольно значительно (в 2—3 раза). Для обеспечения надежности работы проектируемых абсорберов необходимо корректировать рассчитанные размеры по имеющимся данным эксплуатации промышленных аппаратов. [c.497]


    Колонный абсорбер Распределение жидкости при разбрызгивании, за счет капле-и туманообразования в противотоке к газу в насадочных, тарельчатых или ротационных колоннах (см. ПА 1.1.2 и 1.4.3, Ректификация) [c.531]

    Абсорберы, Абсорбция СО2 из конвертированного газа раствором МЭА при низком давлении осуществляется в аппаратах с кольцевой насадкой, не создающей большого гидравлического сопротивления. С увеличением производительности абсорбера возрастают его размеры. Замечено, что эффективность насадочных абсорберов с увеличением их диаметра снижается. Это объясняется трудностью достижения равномерного распределения потоков жидкости и газа по сечению аппарата. [c.195]

    Насадочные абсорберы изготавливают из различных материалов—даже из таких, которые не применяются для других конструкций (например, керамика, графит, стекло). Предназначенные для работы с сильными кислотами стальные аппараты футеруют фасонным кислотоупорным кирпичом на кислотоупорном растворе в два или три слоя. Между слоями прокладывают эластичный материал — например, битум. Кислотные абсорберы больщих размеров строят непосредственно из кислотоупорных материалов, используя вместо кожуха стягивающие металлические бандажи. Решетка, поддерживающая насадку, выполняется из кирпича и опирается на столбики каменной кладки. Абсорберы диаметром <1,5 м могут собираться из керамических царг, соединяемых в раструб и муфтами с соответствующим уплотнением. В таких аппаратах используются керамические плиты с отверстиями для равномерного распределения газа или жидкости. Следует учитывать, однако, что керамика неустойчива к быстрым и значительным колебаниям температуры. [c.334]

    Абсорберы. Б качестве абсорбера чаще всего применяется башня (колонна) с насадкой. Тарельчатые абсорберы устанавливают при работе с небольшим количеством жидкости по отношению к количеству газа, так как в этом случае затрудняется правильное распределение жидкости по насадке колонны. Тарельчатые аппараты сложнее по конструкции и отличаются большим сопротивлением про.хождению газа, чем насадочные абсорберы. [c.202]

    В литературе приводятся опытные данные по эффективным коэффициентам продольного перемешивания жидкости и газа в насадочных аппаратах [68, 74—83], но в ограниченном интервале параметров В целом можно считать, что при правильном первичном распределении влияние продольного перемешивания жидкости в насадке на эффективность массообмена невелико. Так, по данным [78], коэффициент Вж изменяется в пределах от 50 до 120 см /с при увеличении плотности орошения от 10 до 40м /(м -ч) при расчете по данным [80] величина не превышает 150 см /с для условий работы промышленных абсорберов очистки МЭА при атмосферном давлении. [c.77]

    Различают три способа абсорбции 1) распыление газа в жидкости (барботаж), 2) распыление жидкости в среде газа (трубки Вентури, инжекторы, сопла), 3) распределение газа и жидкости друг в друге (орошение насадочной колонны, так называемого скруббера, через который проходит газовая смесь, жидкостью пенные аппараты, механический абсорбер Ганза и др.). [c.335]

    Широкое распространение в промышленности в качестве абсорберов получили колонны, заполненные насадкой — твердыми телами различной формы. В наса-дочной колонне (рис. Х1-12) насадка / укладывается на опорные решетки 2, имеющие отверстия или щели для прохождения газа и стока жидкости. Последняя с помощью распределителя 3 равномерно орошает насадочные тела и стекает вниз. По всей высоте слоя насадки равномерное распределение жидкости по сечению колонны обычно не достигается, что объясняется пристеночным эффектом (см. стр. 105) — большей плотностью укладки насадки в центральной части колонны, чем у ее стенок. Вследствие этого жидкость имеет тенденцию растекаться от центральной части колонны к ее стенкам. Поэтому для улучшения смачивания насадки в колоннах большого диаметра насадку иногда укладывают слоями (секциями) высотой 2—3 м и под каждой секцией, кроме нижней, устанавливают перераспределители жидкости 4. [c.444]

    Как указывалось, в насадочных абсорберах, вследствие распределения в них жидкости тонким слоем по поверхности насадки, создается развитая поверхность контакта между жидкостью и газом. Развитой поверхностью фазового контакта отличаются и бар-ботирующие абсорберы. Однако чаще применяют насадочные абсорберы вследствие простотгл их устройства, дешевизны, удобства обслуживания и ремонта кроме того, насадочные абсор-, беры легко могут быть изготовлены из любого химически стойкого материала (андезит, керамика и др.), в то время как тарельчатые абсорберы трудно изготовить из неметаллических материалов. Следует также указать на более высокое гидравлическое сопротивление тарельчатых абсорберов по сравнению с насадочными. [c.523]

    Одной из главных причин уменьшения эффективности работы абсорберов большого диаметра является значительная поперечная неравномерность [69] потоков газа и жидкости. Так, даже при равномерной порозности насадочного слоя наблюдается растекание жидкости к стенкам абсорбера. Если укладка насадки такова, что порозность возрастает от центра аппарата к его периферии, то доля жидкости, прохо/(ящая вблизи стенок, значительно увеличивается [70]. При заметном повышении скорости газа и особенно при переходе в режим подвисания следует ожидать уменьшение поперечной неравномерности жидкости. На практике главной причиной поперечной неравномерности является недостаточно хорошее первоначальное распределение газа и жидкости по сечению аппарата. В применении к моноэтаноламиновому абсорберу этот вопрос был подробно освеп] ен в работах [53, 71, 72]. [c.77]


    Насадочные абсорберы Черкасского химкомбината являются наиболее интенсивными отечественными МЭА-абсорберами. Приведенная скорость газа в насадочном аппарате в 1,3—1,4 раза превышает скорость газа в барботажном абсорбере НМХК. Производительность по газу в насадочном аппарате может быть дополнительно увеличена заменой нижнего слоя насадки более крупной целесообразно улучшение конструкции вспомогательных углов распределения газа и жидкости. [c.144]

    Рабочие режимы абсорберов с трехфазным псевдоожиженным слоем (см. рис. Х-10) характеризуются зависимостью перепада давлений Ар от скорости газа w . На кривых Ар = f (w ), качественно аналогичных для любой плотности орошения, доли живого сечения опориораспределительной решетки, физических свойств жидкости, газа и шаровой насадки, отмечаются два перегиба, ограничивающие три рабочих режима. В первом из них (участок ОВ на рис. Х-23) абсорбер работает как насадочная колонна при малых нагрузках по газу и жидкости. Для этого режима характерна большая неравномерность распределения жидкости и газа по сечению слоя газ проходит главным образом по центральной части [c.493]

    Сравнительная оценка абсорберов. Поверхностные абсорберы — туриллы и целляриусы —отличаются простотой устройства, требуют незначительных энергетических затрат, но обладают небольшой поверхностью фазового контакта. Поэтому посредством турилл и целляриусов можно осуществить лишь абсорбцию очень хорошо растворимых в жидкости газов, в остальных случаях эти абсорберы весьма мало эффективны. Насадочные абсорберы, благодаря распределению в них жидкости тонким слоем по поверхности насадки, обеспечивают развитую поверхность контакта между жидкостью и газом. В этом отношении высокой эффективностью отличаются и барботирующие абсорберы. Однако чаще применяются насадочные абсорберы вследствие простоты их устройства, дешевизны, легкости обслуживания и ремонта кроме того, они легко могут быть изготовлены из любого коррозионноустойчивого материала (андезит, керамика и др.), в то время как изготовление из неметаллических материалов тарельчатых абсорберов представляет большие трудности. Поверхность фазового контакта весьма сильно развивается, если жидкость разбрызгивается или распыливается в пространстве, наполненном газом. Вследствие этого распыливающе-разбрызгивающие абсорберы превосходят по эффективности все остальные [c.543]

    Широкое распространение в промышленности в качестве абсорберов получили колонны, заполненные насадкой — твердыми телами различной формы. В насадочной колонне (рис. XI-12) насадка 1 укладывается на опорные решетки 2, имеющие отверстия или щели для прохождения газа и стока жидкости. Последняя с помощью распределителя 3 равномерно орошает насадочные тела и стека ет вниз. По всей высоте слоя насадки равномерного распределения жидкости по сечению колонны обычно не достигается, что объясняется пристеночным эффектом (см. стр. 108) — большей плотностью укладки насадки в центральной части колонны, чем у ее стенок. Вследствие этого жидкость имеет таиденцию растекаться от [c.468]


Смотреть страницы где упоминается термин Распределение жидкости и газа в насадочных абсорберах: [c.209]    [c.585]    [c.11]   
Смотреть главы в:

Абсорбция газов -> Распределение жидкости и газа в насадочных абсорберах




ПОИСК





Смотрите так же термины и статьи:

Абсорбер

Газы в жидкости

Насадочные абсорберы

Распределение газа и жидкости в абс

Распределение газов

Распределение жидкости

Распределение жидкость-жидкость



© 2024 chem21.info Реклама на сайте