Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волна

Рис. 20. Поглощение света 0,01—молярным раствором галоида в четыреххлористом углероде в зависимости от длины волны. Толщина слоя составляет для раствора хлора—2 см, для раствора брома — 0,5 см и для раствора иода —0,1 см. Рис. 20. <a href="/info/102508">Поглощение света</a> 0,01—<a href="/info/8327">молярным раствором</a> галоида в <a href="/info/1356">четыреххлористом углероде</a> в зависимости от <a href="/info/5221">длины волны</a>. <a href="/info/360704">Толщина слоя</a> составляет для раствора хлора—2 см, для раствора брома — 0,5 см и для раствора иода —0,1 см.

    Первоначально свойства и поведение поляризованного света интересовали исключительно физиков. Однако в 1815 г, французский физик Жан Батист Био (1774—1862) показал, что при прохождении поляризованного света через некоторые кристаллы происходит поворот плоскости колебаний (плоскости поляризации) световых волн. В одних случаях она поворачивается по часовой стрелке (правое вращение), в других — против часовой стрелки (левое вращение). К числу кристаллов, обладающих указанным свойством,— оптической активностью, относятся и кристаллы ряда органических соединений. Белее того, некоторые из этих органических соединений, например различные сахара, оптически активны и в растворах. [c.86]

    Он предположил, что обобществление пары электронов (по Льюису и Ленгмюру) можно трактовать как взаимодействие волн или перекрывание электронных облаков. Химической связи, изображаемой в структурной теории Кекуле чертой, в новых представлениях соответствует область максимального перекрывания электронных облаков. При этом оказалось, что перекрывание электронных облаков иногда происходит не только в единственном направлении, изображаемом валентной связью в структурной формуле. Иначе говоря, истинную структуру молекулы нельзя представить даже приближенно никакой структурной формулой в отдельности. Ее можно, однако, рассматривать как промежуточную между несколькими гипотетическими структурами, как резонансный гиб- рид этих структур. Важно от.метить, что энергия такой реальной молекулы ниже, чем можно было бы ожидать на основании любой [c.161]

    Графически зависимость атомных объемов элементов от их атомных весов выражается в виде ряда волн, поднимающихся острыми пиками в точках, соответствующих щелочным металлам (натрию, калию, рубидию и цезию). Каждый спуск и подъем к пику соответствует периоду в таблице элементов. В каждом периоде значения некоторых физических характеристик, помимо атомного объема, также закономерно сначала уменьшаются, а затем возрастают (рис. 15). [c.97]

    Длина электромагнитных волн и характер излучения [c.143]

    При облучении светом элементов в парообразном состоянии наблюдается обратная картина свет определенных длин волн не излучается, а поглощается. Более того, поскольку как поглощение, так и излучение света обусловлено одними и теми же процессами, протекающими в противоположных направлениях, то пары поглощают излучение с точно теми же длинами волн, какие наблюдаются в других условиях при испускании излучения. [c.102]

    Сегодня мы уже знаем, что излучение света атомами обусловлено определенными явлениями, связанными с их структурой. В атомах каждого элемента эти явления протекают по-своему. Следовательно, каждый элемент испускает набор излучений только определенных длин волн. [c.102]


    Разработаны и испытаны бомбы термоядерного синтеза с потенциалом разрушения в тысячи раз большим, чем у первых бомб расщепления. Одна большая бомба термоядерного синтеза может полностью разрушить самый крупный город мир , а если взорвать все имеющиеся сейчас бомбы термоядерного синтеза, то взрывная волна, пожары и радиоактивные осадки уничтожат все живое на земле. [c.179]

    Световые волны — это не волны на поверхности, а потому колебания в них не должны происходить обязательно в направлении вверх-вниз. Число направлений, в которых колебания световых волн могут происходить под прямым углом к направлению их распространения, практически бесконечно. В луче обычного света ни одно из направлений колебаний не является предпочтительным Однако если такой луч света пропустить через некоторые кристаллы, то упорядоченное расположение атомов в кристалле заставит световые колебания происходить только в какой-то определенной плоскости — в плоскости, которая позволяет лучу проходить и обходить ряды атомов. [c.86]

    Представлялось весьма вероятным, что темные линии в спектре Солнца обусловлены тем, что испускаемый раскаленной солнечной поверхностью свет поглощают газы более холодной солнечной атмосферы. Пары веществ (химических элементов), находящиеся в атмосфере Солнца, также поглощают свет определенных длин волн, и по положению возникающих темных линий в спектре можно судить, какие элементы находятся в атмосфере Солнца. [c.102]

    Казалось естественным предположить, что катодные лучи представляют собой какую-то форму света, обладающую волновым характером. Волны, подобно свету, распространяются прямолинейно и, подобно свету, не испытывают влияния сил тяготения. В то же время катодные лучи вполне могут представлять собой частицы, движущиеся с огромной скоростью. Поскольку масса этих частиц чрезвычайно мала или поскольку они движутся чрезвычайно [c.147]

    Однако оказалось, что четыре электрона, подобно волнам, взаимодействуют друг с другом и образуют четыре средние связи, которые полностью эквивалентны и направлены к вершинам тетраэдра, как в тетраэдрическом атоме Вант-Гоффа — Ле Беля. [c.162]

    Для этой же цели служит и другое вещество — амбра. Это дурно пахнущие выделения организма больных китов. Она в больших количествах попадается в убитых китах, а иногда просто на берегу, куда его выносят волны. Несмотря на свое неаппетитное происхождение и внешний вид, амбра ценится очень высоко, потому что широко применяется в парфюмерной промышленности. [c.129]

    Основной характеристикой электромагнитного излучения яв ляется длина волны % или частота V (чаще вместо частоты ие пользуется волновое число V). Электромагнитные излучения раз личных длин волн (частот) составляют электромагнитный спектр В спектрофотометрии используются ультрафиолетовый (УФ), ви димый и инфракрасный (ИК) участки электромагнитного спектра [c.458]

    V — частота света, которая связана с длиной волны Я н ско- [c.138]

    Можно определить, какую минимальную длину волны должен иметь применяемый свет для того, чтобы обеспечить передачу того количества энергии, которое необходимо для диссоциации молекулы хлора на атомы.  [c.141]

    А [Па]. Можно показать, что свет с такой длиной волны подводит около 90 ккал/г-мол энергии [c.142]

    Хлор поглощает свет в области длины волн 2500—4500 А. Общие сведения о длинах электромагнитных волн разного типа приведены в табл. 62 [12]. Отсюда видно, что хлор поглощает лучи в ближнем ультрафиолете и в фиолетовой области видимого спектра. [c.142]

    Инфракрасный свет короткие волны [c.143]

    Каждая однородная система обладает способностью избирательно поглощать излучения определенных длин волн. Наиболее это заметно на системах, избирательно поглощающих в области видимого участка спектра. Цвет любого окрашенного раствора является дополнительным к цвету поглощенного излучения. [c.459]

    Электромагнитные волны переходная область [c.143]

    Это обстоятельство является неожиданным, поскольку давно известно, что ультрафиолетовые лучи, а также свет более длинных волн сильно ускоряют процесс хлорирования [6]. [c.362]

    Так как свет длиной волны 4000—4360 А дает еще лучшие результаты, надо полагать, что некоторую роль играют процессы сенсибилизации, в ТО время как через посредство абсорбированной молекулы хлора возбуждается молекула 502. Хлор, абсорбированный световыми лучами [c.363]

    Кривая показывает, что до тех пор, пока приложенное напряжение не достигло некоторой определенной величины (см. стр. 428), сила тока остается постоянной, весьма близкой к нулю (остаточный ток). Но как только напряжение превысит эту величину, сила тока очень быстро возрастает с увеличением напряжения, и кривая круто поднимается вверх. Однако очень скоро возрастание силы тока снова прекращается и кривая переходит в прямую, параллельную оси абсцисс (предельный или диффузионный ток). Таким образом, вольт-амперная кривая имеет ступенчатый характер и называется полярографической волной . [c.452]

    Отсюда следует, что высота полярографической волны пр.чмо пропорциональна концентрации восстанавливающегося на катоде (т. е. определяемого) иона в растворе. [c.453]

    Влияние существующего в растворе электрического поля на определяемые катионы исключают, добавляя к раствору концентрированный раствор какого-либо электролита, содержащего катион с высоким потенциалом восстановления (обычно раствор соли щелочного или щелочноземельного металла). При этом перенос тока будет происходить практически только за счет движения ионов этого электролита. Определяемые же ионы, поскольку концентрация их гораздо меньше, будут играть Б этом переносе такую ничтожно малую роль, что без заметной ошибки можно считать их появление у катода обусловленным исключительно процессом диффузии из более отдаленных частей раствора. Только пр этом условии можно считать, что высота полярографической, волны пропорциональна концентрации восстанавливающихся на катоде (определяемых) ионов. Такие растворы электролитов, с помощью которых устраняется влияние электрического поля, называются основными растворами или фоном. [c.455]


Рис. 67. Схема измерения высоты полярографической волны Рис. 67. Схема <a href="/info/890596">измерения высоты</a> полярографической волны
    Ниже приведены длины волн и волновые числа этих участког. спектра  [c.459]

    Излучение короче 200 нм используется для проведения специальных работ в вакууме, так как различные компоненты воздуха поглощают в этой области длин волн. Далекая инфракрасная область используется. главным образом для изучения химического строения различных соединений. [c.459]

    Представление о четырех элементах-стихиях властвовало над умами людей два тысячелетия, и хотя в конце концов наука отвергла его, мы говорим о бушующих стихиях , когда хотим сказать, что ветер (воздух) и волны (вода) подняли бурю. Что же касается пятого элемента (эфира, по-латыни quinta essentia), то до сих пор, имея в виду чистейшую и наиболее концентрированную форму чего-то, мы говорим квинтэссенция (а ведь это название, которое дал Аристотель пятому всеобщему принципу). [c.16]

    В 1801 г. Томас Юнг (1773—1829), выдающийся английский физик, астроном и врач (разработавший, в частности, теорию цветного зрения), провел опыты, показавшие, что свет ведет себя так, как будто он состоит из очень маленьких волн. Затем, примерно в 1814 г., французский физик Огюстен Жан Френель (1788—1827) показал, что световые волны относятся к классу волн, называемых поперечными волнами. В таких волнах колебания происходят под прямым углом к направлению их распространения. Самый наглядный пример волн такого типа — волны на воде. Отдельные частицы воды перемещаются вверх и вниз, а сама волна движется по поверхности. [c.85]

    Английский физик Чарльз Гловер Баркла (1877—1944) сделал следующий важный шаг. Он установил, что при рассеивании рентгеновских лучей различными элементами образуются пучки рентгеновских лучей, которые проникают в вещество на характеристические величины. Каждый элемент создает особый набор рентгеновских лучей. В трубке Крукса источником таких рентгеновских лучей становился под действием пучка катодных лучей антикатод (который изготавливали из различных металлов). Другой английский физик, Генри Гвин Джефрис Мозли (1887—1915), используя в качестве антикатода различные элементы, в 1913 г. установил, что чем больше атомная масса элемента, тем меньше длина волны образующихся рентгеновских лучей. Эта обратная зависимость, доказывал Мозли, связана с величиной положительного заряда ядра атома. Чем больше заряд, тем короче длина волны рентгеновских лучей. [c.156]

    Исходя из длины волны, можно вычислить заряд ядра атома любого элемента. Таким образом в итоге удалось показать, что згряд ядра водорода равен +1, гелия +2, лития +3 и так далее вплоть до урана , заряд ядра которого равен +92. [c.156]

    Для достижения максимальной скорости реакции сульфохлорирования, а также оптимального соотношения хлора и серы необходима наименьшая интенсивность падающего света. Усиление интенсивности света не имеет влияния на ход реакции. Ниже наименьшей интенсивности света наблюдаются замедление скорости реакции и ухудшение соотношения хлора и серы, а хлорирование в углеродной цепи снова усиливается. При одинаковой интенсивности свет более коротких волн дает более низкое соотношение хлора и серы, чем длинноволновый свет. Это благоприятное влияние на реакцию сульфохлорирования может объясняться непосредственным возбуждением молекулы 502 или промежуточным возникновением радикала К—502, тем более что по исследованиям Корнфельда и Веегмана [8] абсорбция 502 начинается [c.363]

    Как указывалось, лучи длиной волны ниже 2000 А вызывают почернение псверхности защитных трубок, соприкасающейся с реакционной жидкостью (см. стр. 390). Если трубки сделаны из иенского стекла, то нет необходимости дополнительно отфильтровывать лучи этой длины, ибо в отличие от крарца иенское стекло их не пропускает. [c.401]

    Следовательно, еслн получить в соверн1енно одинаковых условиях ио-лярограммы для исследуемого раствора и для стандартного раствора, содор> ащего определяемый ион в точно известной концентрации (Сет), то, обозначив высоты полярографических волн через Ц Аст, можно написать пропорцию  [c.453]

    При массовых определениях удобнее по серии стандартных растиоров построить калибровочную кривую, показывающую, какие высоты полярографической волны отвечают различным концентрациям определяемого иона, и по этой кривой находить соответствующие концентрации при анализе. [c.453]

    Вы[[ е указывалось, что при достижении определенного напряжения сила тока перестает изменяться, как бы ни попыталось напряжение. Это справедливо, од[1ако, только при условии, если раствор не содержит каких-либо других ионов, способных восстанавливаться на ртутном катоде. Если такие ионы присутствуют, то при дальнейшем повышении напряжения после достижения предельного тока для данного иона в конце концов будет достигнут потенциал, прп котором начинают восстанавливаться катионы другого металла. Следовательно, вольтамперная кривая после горизонтального участка начнет снова круто подниматься кверху. Другими словами, за одной полярографической волной последует другая, за гею —третья (если присутствует третий катион) и т. д. Если потенциалы иосстановления этих ионов различаются достаточно сильно (больше чем [c.453]

    Проходящий через гальванометр 7 ток отклоняет зеркальце тем сильнее, чем больще сила тока. Отраженный зеркальцем луч света оставляет на фото бумаге тонкую линию, видимую после проявления. Таким образом прибор авто матически записывает вольт-амперную кривую вместе с рядом параллельно рас положенных вертикальных линий, расстояние между которыми равно 1 см, т. е соответствует увеличению напряжения на 0,1 (или на 0,2) в. На рис. 67 изобра жена полученная полярограмма и показан способ измерения высоты полярогра фической волны (отрезок h), по величине которой определяют концентрадию соответствующего иона в растворе. [c.454]

    Содержащийся в растворе кислород весьма сильно мешает полярографическому определению, так как, восстанавливаясь на катоде, он дает две полярографические волны. Первая из них соответствует восстановлению Оа до Н2О2, а вторая — до Н2О или до ОН -ионов. В зависимости от pH раствора первая волна проявляется при потенциалах от +0,15 до —0,15 в, а вторая — от —0,5 до —1,2 в. [c.455]


Смотреть страницы где упоминается термин Волна: [c.156]    [c.141]    [c.143]    [c.143]    [c.143]    [c.143]    [c.143]    [c.143]    [c.259]    [c.503]    [c.98]   
Лабораторный практикум по теоретической электрохимии (1979) -- [ c.0 ]

Горение (1979) -- [ c.0 ]

Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.0 ]

Современная аналитическая химия (1977) -- [ c.0 ]

Теоретические основы электрохимического анализа (1974) -- [ c.0 ]

Технический анализ в производстве промежуточных продуктов и красителей (1958) -- [ c.0 ]

Полярографические методы в аналитической химии (1983) -- [ c.0 ]

Электрохимия органических соединений (1968) -- [ c.0 ]

Технический анализ в производстве промежуточных продуктов и красителей Издание 3 (1958) -- [ c.0 ]

Теоретическая неорганическая химия (1969) -- [ c.0 ]

Теоретическая неорганическая химия (1971) -- [ c.0 ]

Теоретическая неорганическая химия (1969) -- [ c.0 ]

Инженерная лимнология (1987) -- [ c.142 , c.149 ]

Теоретическая неорганическая химия (1971) -- [ c.0 ]

Гнутые профили проката (1980) -- [ c.19 ]




ПОИСК







© 2022 chem21.info Реклама на сайте