Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частицы в воде

    Преподаватель измерит электрическую проводимость очищенной воды. Электрическая проводимость зависит от наличия растворенных электрически заряженных частиц в воде (см. разд. Б.6). Также будут измерены электропроводности дистиллированной воды и любого образца воды из-под водопроводного крана. Что эти эксперименты говорят о чистоте различных образцов воды  [c.21]


    Согласно действующим нормам, водоемы подразделяют на две категории водоемы, используемые для водопотребления, и водоемы для водопользования. К числу нормативных требований относят следующие содержание растворенного в воде кислорода после смешения должно быть не менее 4 мг/л БПКполн— не более 3 мг/л для водоемов первой категории и 6 мг/л — для второй содержание взвешенных частиц в воде не должно увеличиваться после спуска сточных вод соответственно более чем на 0,25 и 0,75 мг/л минеральный осадок может быть не более 1000 мг/л, в том числе хлоридов — 350 мг/л и сульфатов — 500 мг/л. [c.315]

    Низким считают содержание частиц в воде менее 30000 млн , высоким — более 100000 млн , из которых примерно половину составляют хлориды. [c.330]

    Нефть представляет собой полидисперсную систему, размеры частиц которой изменяются в весьма широких пределах. Как сильно зависит время осаждения от дисперсности частиц, можно представить из нижеприведенных данных, полученных при осаждении сферических кварцевых частиц в воде (табл. 3.1). [c.130]

    С такими случаями приходится сталкиваться при проведении реакций, идущих с образованием активных промежуточных частиц, в растворителе, способном к взаимодействию с этими промежуточными частицами. Так, при проведении процессов, идущих с образованием электрофильных промежуточных частиц, в воде, способной реагировать с электрофильными компонентами, параллельно с основной реакцией может проходить побочная реакция с водой (как правило, гидролиз промежуточных частиц). [c.234]

    Из рис. 16.7 следует, что форма существования растворенного СО2 в условиях равновесия сильно зависит от pH среды. Этот рисунок характерен для поведения СО2 в водном растворе, который может считаться разбавленным по отношению к ионным частицам. Однако при повышении суммарной концентрации ионных частиц в воде значения соответствующих констант равновесия становятся другими . Например, равновесия ионизации угольной кислоты в морской воде смещаются относительно положения, относящегося к разбавленному водному раствору, что показано на рис. 17.1. Сплошные линии на этом рисунке соответствуют линиям, показанным на рис. 16.7, а штриховые линии относятся к морской воде. Мы видим, что при pH морской воды, примерно равном 8, концентрация в ней ионов СО3 намного выше, чем в разбавленном водном растворе при том же значении pH. Чтобы правильно понимать равновесия с участием карбонат- и бикарбонат-иона в морской воде, следует учитывать именно эту измененную картину. [c.146]


    Латексы, представляющие собой дисперсии твердых полимерных частиц в воде,— наиболее распространенные полимерные добавки к цементу. При этом полимеры могут быть эластомерными (каучукообразными) или аморфными термопластами. [c.315]

    Дисперсия обычно содержит около 50% воды, которая при твердении бетонной смеси участвует в процессах гидратации цемента. Латексы получают полимеризацией эмульсии жидких мономерных частиц в воде, поэтому латексы иногда относят к эмульсиям. [c.315]

    Вязкость газовой среды на несколько десятичных порядков ниже вязкости жидкостей. Поэтому броуновское движение аэрозольных частиц более интенсивно, чем частиц в лиозолях. Например, среднее квадратичное смещение частицы в воздухе, вязкость которого при 20°С равна 1,80х х10 Па-с, должно превышать почти на порядок среднее квадратичное смещение таких же частиц в воде (ее вязкость равна приблизительно 1 мПа-с). [c.189]

    Проба воды, взятая для анализа, должна отражать условия и место ее взятия, причем объем пробы должен быть достаточен и соответствовать выбранной методике анализа. Для оценки эффективности систем обезвреживания или определения величины выброса в водоем пробу отбирают непосредственно из трубопровода. Отбор проб из рек, ручьев, водохранилищ, озер, прудов, родников, колодцев, скважин, дренажей ведется на глубине 0,2—0,3 м под поверхностью воды пробоотборным прибором (бутыль, батаметр) с учетом скорости движения воды. Поскольку концентрация растворенных химических соединений и взвешенных частиц в воде, особенно после систем обезвреживания стоков промышленных предприятий, изменяется в течение суток, отбор проб воды ведется через равные промежутки, объем воды, необходимый для полного анализа,— 2 л — отбирается в стеклянную бутыль и консервируется (если анализ будет проводиться через сутки и более). [c.25]

    Суспензии полярных минеральных порошков в воде устойчивы не только из-за молекулярной сольватации как следствия хорошей смачиваемости гидрофильной поверхности частиц водой. В этих суспензиях действует еще один дополнительный фактор стабилизации. Дело в том, что минеральные частицы в воде в большинстве случаев ионогенны, т. е. способны отдавать ионы в раствор и приобретать электрический заряд. Поэтому вокруг частиц минеральных суспензий в воде образуется двойной электрический слой ионов, подобный тому, который имеется в гидрозолях, и агрегативная устойчивость таких суспензий бывает обычно достаточно высокой. [c.138]

    Здесь 0 — краевой угол, рад д — вес частицы в воде г — радиус пузырька к — коэ([)фициент. [c.327]

    Суспензиями называются грубодисперсные системы, в которых дисперсионной средой является жидкость, а дисперсной фазой — твердое вещество. Суспензии, как правило, седиментационно неустойчивы и твердая фаза оседает под действием силы тяжести частиц. Примером суспензий могут служить суспензии минеральных частиц в воде, сажи в воде и др. [c.168]

    Эти материалы могут использоваться для защиты стальных элементов. Предложен ряд способов нанесения защитных покрытий из полимерных материалов либо в форме шпатлевки, которая наносится слоем в несколько миллиметров, либо в форме окраски. Основная трудность состоит в обеспечении прочного скрепления (адгезии) покрытия с металлом. Это зависит и от состава покрытия и от способа его нанесения и от качества чистоты подготовки поверхности. В случае достаточно высокого содержания абразивных частиц в воде следует применять специальные песковые или грунтовые насосы. [c.260]

    Чтобы избежать засорения фильтрующей поверхности нагнетательных скважин, вводятся нормы на содержание в воде тех загрязнений, которые могут механически закупорить поровые каналы пласта в призабойной зоне. По существующим правилам и инструкциям вода, нагнетаемая в пласты, не должна содержать нефти или нефтепродуктов. Количество взвешенных частиц в воде не должно превышать 2 мг/л, количество железа, которое может выпасть в виде гидроокиси,— 0,3 мг/л (считая на Fe). [c.222]

    Для расчета Р. з. определяют требуемую кратность ослабления излучения К = Ра/Р, где Р и Я-мощность дозы (или плотности потока излучения) в заданных точках, соотв. без защиты и допустимая (или необходимая). В случае непосредственно ионизирующего излучения (пучки электронов, протонов, а-излучение, др. заряженные частицы) Р. з. обеспечивается слоем любого материала толщиной более их пробега. Напр., при одинаковой энергии в 1 МэВ пробеги электронов, протонов и а-частиц в воде равны 4300, 22,5 и 5,8 мкм соответственно. Защиту от интенсивных потоков электронов и р-излучения рассчитывают с учетом образующегося в источнике и защитном материале тормозного рентгеновского излучения. В случае косвенно ионизирующего излучения (у- и рентгеновское излучения, поток нейтронов) учитывают энергетич. спектр, угловое и пространств, распределение излучения, геометрию источника (точечный, протяженный, объемный) соответственно выбирают конструкцию защиты (геометрию, состав защитного материала, толщину его слоя и т.д.). [c.149]


    Такое расхождение можно объяснить в первую очередь наличием в жидкости нерастворенного газа (воздуха), а также твердых частиц. Воздух и твердые частицы в воде изменяют ее модуль объемного сжатия К. Влияние воздуха и твердых частиц на а в трехфазном потоке можно учесть по формуле В. М. Алышева. [c.65]

    Основой для разработки способа послужили свойства кислой смолки образовывать суспензию твердых частиц в воде, а также сыпучесть и подвижность выделенного органического твердого остатка, позволяющие добавлять их Б качестве присадки в шихту. [c.132]

    НИИ или слабом разрежении). Для фильтрования загрязненных вод используют фильтр типа белая лента , а при исследовании воды с загрязнением не более 25 мг/л — тонкие мембранные фильтры. Фильтр со взвешенными веществами высушивается при 105 С до постоянной массы, и по разнице массы фильтра до и после фильтрации определяется количество взвешенных веществ в воде. Между количеством взвешенных веществ и прозрачностью однозначной связи нет. Прозрачность определяется наличием не только взвешенных частиц, но и коллоидных примесей, которые не задерживаются бумажным фильтром, а потому не включаются в состав показателя взвешенных веществ. Кроме того, прозрачность зависит также от формы и размеров частиц, что для показателя взвешенных веществ значения не имеет. Несмотря на эти различия ориентировочных определений (в целях упрощения эксплуатационного контроля), по результатам длительных наблюдений строят график зависимости прозрачности от количества взвешенных веществ, с помощью которого на основании быстро и легко выполняемого определения прозрачности можно с достаточной степенью точности установить количество взвешенных частиц в воде. [c.29]

Рис. 2.3. Зависимость скорости осаждения угольных частиц в воде от их диаметра Рис. 2.3. <a href="/info/361093">Зависимость скорости</a> осаждения <a href="/info/135322">угольных частиц</a> в воде от их диаметра
    Концентрация взвешенных веществ (частиц) в воде на конечной стадии осаждения зависит не только от флокуляции, но в большой степени от устройства отстойника и свойств взвешенных веществ. [c.417]

    Пульпой называется смесь минеральных частиц и воды, в которой твердые частицы равномерно распределены в объеме воды. Взвешивание минеральных частиц в воде достигается перемешиванием пульпы или движением ее с достаточной скоростью. Чем крупнее частицы, тем легче пульпа расслаивается. Равномерно перемешанная пульпа обладает многими свойствами жидкости более тяжелой, чем вода. [c.791]

    Эффективность очистки флотацией значительно увеличивается, если с целью интенсификации образования агрегатов пузырьки — частицы в воду одновременно с воздухом добавляют различные реагенты, которые увеличивают гидрофобизацию поверхности частиц, дисперсность и устойчивость газовых пузырьков (реагентная флотация). [c.254]

    Эффективность очистки флотацией значительно увеличивается, если с целью интенсификации образования комплексов пузырек — частица в воду вместе с воздухом добавить различные реагенты, увеличивающие гидрофобизацию поверхности частиц, дисперсность и устойчивость газовых пузырьков. В качестве коагулянтов, образующих микрохлопья, всплывающие с захваченными ими частицами загрязнений в виде пены, исиользуют соли аммония и железа (лучше хлорид железа (П1) и хлорид алюминия, которые не увеличивают содержания сульфат-ионов в оборотной воде). Степень очистки безреагентной флотацией — всего 11—23%- [c.94]

    Воздушная соиарация существенно отличается от гидравлической классификации тем, что скорость осаждения частиц в воздухе значительно болыпе скорости осаждения частиц в воде. Воздушная сепарация осуществляется обычно в восходящем воздушном потоке. [c.478]

    В статическом методе применяют частицы минерала размером от 6,3 до 12,7 мм их промывают дистиллированной водой для удаления пыли, а затем сушат при повышенной температуре. Подготовленные таким образом частицы смешивают с определенным количеством битума, обычно при 150 °С для твердых битумов или при более низкой температуре для жидких битумов или смол. После охлаждения смесь заливают водой и выдерживают без перемешивания 20 ч при 25—30 X для жидких битумов и при 60 °С для твердых. Учитывая влияние катионов на межфазовое натяжение, рекомендуется использовать свежеперегнанную воду. Влияние растворенных в воде катионов на межфазовое натяжение было продемонстрировано Ли [821 и Гземски [831. После определенной длительности выдерживания покрытых битумом минеральных частиц в воде визуально определяют поверхность частиц, оставшуюся покрытой битумом. [c.79]

    Частица в воде Радиус частицы, ллк Подвижность, см 1сек [c.129]

    Частным случаем коагуляции электролитами является взаимная коагуляция двух гидрофобных золей с различными знаками зарядов. В отличие от обычной электролитной коагуляции при определенном соотношении концентрации смешиваемых золей всегда наступает переразрядка, тогда как при обычной коагуляции пере-разрядка происходит только при действии многовалентных ионов-коагуляторов. Взаимная коагуляция имеет большое значение как в ряде природных, так и технологических процессов. Коагуляция почвенных коллоидов электролитами и взаимная коагуляция коллоидов имеет большое значение в формировании почвенного горизонта. В качестве примера технического использования взаимной коагуляции можно назвать очистку водопроводной воды от коллоидных частиц, проходящих через песчаные фильтры, с помощью добавок солей алюминия (квасцов или сульфата алюминия). Эти соли в воде гидролизуются и образуют положительно заряженные коллоидные частицы А1(0Н)з, которые, взаимодействуя с коллоидными частицами в воде, заряженными в большинстве случаев отрицательно, приводят к взаимной коагуляции с выпадением коагулированных частиц в осадок. [c.336]

    Из уравнений скорости электрофореза вытекает важный практический вывод, что скорость движения коллоидных частиц в воде в изученных случаях находится в пределах от 10 до 40-10- см1сек. Эта величина близка к подвижности простых неорганических ионов. Таким образом, скорость движения заряженных частиц в воде не зависит от их величины и от заряда частиц. Объясняется это тем, что отношение р/г для всех заряженных частиц жидкости одинаково. В жидкой среде каждая малая частица (ион или коллоидная частица) заряжается до некоторого постоянного потенциала, который для воды равен 0,07 в. [c.249]

    Для определения действительных размеров частиц минеральных ингредиентов и относительного содер кания частиц разных размеров применяют методы, основанные на измерении скорости оседания частиц в воде, т. е. методы седиментац ионного анализа. При оседании на частицы твердого вещества, кроме силы тяжести, действует сила трения /, направленная противоположно силе тяжести. Так как величина силы трения возрастает прямо пропорционально скорости оседания, согласно закону Стокса, то очень скоро устанавливается равновесие этих сил, после чего оседание происходит с постоянной скоростью. На этом основании выводится простая зависимость между радиусом частиц и скоростью оседания  [c.126]

    Преимуществами подшипников с водяной смазкой являются их простота, отсутствие необходимости защищать их от попадания воды со стороны рабочего колеса турбины во время работы, их надежность и долговечность. Однако последнее обеспечивается только при непрерывной подаче смазочной воды с давлением не ниже 0,15—0,20 МПа (1,5—2 кгс/см ) и при условии отсутствия в воде абразивных частиц (содержание массы твердых частиц в воде, поступающей в подшипник, не должно превышать 0,1 г/л). Следует учитывать, что в подпшпнике вода не только создает весьма малый коэффициент трения между валом и вкладышами (в зависимости от удельного давления и окружной скорости 0,05—0,005), но и служит для охлаждения, что особенно важно, поскольку резина имеет малую теплопроводность. Поэтому при прекращении подачи воды температура вкладышей очень быстро поднимается и они могут выходить из строя. [c.58]

    В гражданском строительстве проявляют большой интерес к турбулентному движению частиц в воде в связи с проблемой переноса ила в реках. Данному вопросу уделялось много внимания. Большинство этих работ отражено в статье Хино [5], в которой получены теоретические выражения для оценки изменения интенсивности турбулентности, масштаба и времени вырождения вихрей из-за наличия частиц. Для водный суспензий с равноплотными частицами (с нейтральной плавучестью) интенсивность турбулентности увеличивается при более высоких концентрациях частиц. Этот вывод противоположен тому, который получается из уравнения (8.4). [c.273]

    Значительно меньше, чем термоосмос, изучено явление термофореза в жидкостях в связи с трудностью корректного учета тепловой конвекции и броунирования (в случае малых частиц). Мак Наб и Майсен [ИЗ] измерили скорость термофореза сферических частиц латекса диаметром около 1 мкм в воде и гексане. В разбавленной суспензии, заполнявшей плоскую (шириной 0,3 см) горизонтальную щель, создавался вертикальный градиент температуры, причем нижняя часть суспензии была более холодной, что уменьшало конвекцию. Скорость термофореза определялась по разности между измеренной скоростью вертикального смещения частиц в поле температуры и стоксовской скоростью оседания. Значения Vi составляли от 3 до 8 мкм/с при изменении VT от 100 до 300 град/см. Термофо-ретическое движение частиц было направлено в холодную сторону, ускоряя их оседание. Больших отличий в значении Для частиц в воде и гексане обнаружено не было. К сожалению, для объяснения полученных зависимостей у, от УУ в работе [ИЗ] использовался аппарат теории термодиффузии частиц в газах (без учета особой структуры граничных слоев жидкости и диффузного электрического слон), неприменимый для жидких сред. [c.337]

    Сила прилипания X и коэффициент трения Э зависят от степени сближения частиц. Экспериментальное изучение этой зависимости весьма затруднительно. Нам удалось измерить величину прилипания только при сближенности частиц, отвечающей полному набуханию для гидрофильных частиц в воде она оказалась порядка 100 дин1см . [c.147]

    СВЧ Мм применяют в радиоэлектронике, для изготовления волноводов, фазовращателей, преобразователей частоты, модутяторов, усилителей и т п Специфич требованиями к М м для СВЧ диапазона являются высокая чувствительность к управляющему магн полю, высокое уд электрич сопротивление, малые электромагн потери, высокая т-ра Кюри Наиб распространены никелевые, никель-медно-марганцевые ферриты-шпинели, иттриевый феррит-гранат, легированный РЗЭ Применяют металлич сплавы Fe-NI, Ре-А1, Ре А1 Сг Их используют гл обр для создания поглотителей кющности в разл изделиях СВЧ техники Композиционные СВЧ М м используют для создания экранов для защиты от СВЧ полей Металлич наполнителями являются Ре, Со, N1, сплавы сендаст, связующими - разл полимерные смолы и эластомеры Жидкие М м, или магн жидкости, представляют соЬой однородную взвесь мелких (10 -10" мкм) ферромагн частиц в воде, керосине, веретенном масле, фтор-углеводородах, сложных эфирах, жидких металлах Магн жидкости применяют для визуализации структуры постоянных магн полей и доменной структуры ферромагнетиков, 1243 [c.626]

    В основе У. лежит дифракция света на колловдных частицах, размер к-рых меньше половины длины световой волны, в результате чего система начинает светиться. Частицы можно наблюдать в УМ как яркие дифракц. пятна, изучать их природу, оценивать концентрацию, однако изображений частиц микроскоп не создает. Яркость свечения, а следовательно, и видимость частиц зависят от разности показателей преломления частицы и дисперсионной среды. Если она велика (напр., взвесь металлич. частиц в воде), то отчетливо фиксируются частицы размерами 2-4 нм (т.е. значительно меньше предела разрешения обычных микроскопов). Если эта разность мала (взвесь орг. частиц в воде), то обнаруживаются только частицы размерами не менее 20-40 нм. В лиофильных коллоидах (напр., гелях желатины, декстрина) пов-сть частиц вследствие сольватации не обладает заметной разницей в показателях преломления относительно дисперсионной среды (воды), поэтому свечение в них знач1ггельно слабее. [c.36]

    Кроме отсадки на принципе обогащения угля с использованием разницы в скоростях осаждения частиц в воде основана работа реожелобов и концентрационных столов, но они применяются в ограниченных масштабах. В данном случае поток воды перемещает разделяемую смесь по наклонной поверхности, не имеющей отверстий, и для разделения используются не только разность плотностей породы и угля, но и различия в форме их частиц. Уголь при дроблении принимает форму, близкую к кубической, а порода — пластинчатую. При транспортировании потоком воды по наклонной плоскости частицы породы постепенно отстают от угля, что позволяет их разделить. Эффективность такой системы невелика. [c.50]

    Для методов повышения нефтеотдачи наибольший интерес представляют гидрозоли (взвеси твердых частиц в воде), мицелярные и микроэмульсионые растворы поверхностно-активных веществ (ПАВ), гелеобразующие композиции, а также способы регулирования свойств золей и гелей. [c.42]

    Хорошо известно, что гидрофобные частицы в воде прилипают друг к другу, как только приходят в соприкосновение. Поэтому не удивительно, что частицы кремнезема становятся гидрофобными, едва только на некоторых ограниченных участках на частицах кремнезема начинается флокуляция. Следовательно, при низких концентрациях такие ионы, как додециламмоний, влияют на электрокинетический потенциал частиц кварца точно так же, как и ионы натрия. При более высоких концентрациях наблюдается критическая точка, в которой электрокинетический потенциал резко изменяется, и ионы аммония с длинной цепью, несомненно, собираются в отдельные ассоциаты на поверхности раздела во многом подобно тому, как это происходит при формировании мицелл в объеме раствора [294]. [c.530]

    Классификацией называют процессы разделения смеси мине-пальных частиц на классы (по размерам), основанные на различии в скорости опускания частиц в воде или воздухе. [c.31]

    Средняя сила прилипания неполярных частиц варьируется в пределах 3—4 десятичных порядков и растет в ряду тефлон — парафин — мыло. В целом сила прилипания неполярных частиц в неполярной среде на 2—3 порядка ниже, чем полярных частиц в воде [24, 25]. Силы прилипания неполярных нитеобразных игольчатых ча- Рис. 8. Кривые распределения силы стиц в неполярной жидкости отличают- прилипания ся резко выраженной анизотропностью. флотГ Т- теара "лн 1 [c.171]


Смотреть страницы где упоминается термин Частицы в воде: [c.102]    [c.102]    [c.293]    [c.102]    [c.26]    [c.227]    [c.31]   
Мембранная фильтрация (1978) -- [ c.23 , c.205 , c.221 , c.223 , c.228 , c.269 , c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Альфа-частицы пробег в воде

Бета-частицы пробег в воде

Влияние химического состава воды, биологических процессов и взвешенных частиц

Гидроксильные группы и молекулы воды внутри частиц кремнезема

Изменение окраски моря под действием взмученных крупных частиц, под действием флуоресценции воды и под непосредственным влиянием волнения

Капуста, определение воды влияние размера частиц

Картофель, определение воды размеров частиц

Кварц, скорость осаждения его частиц в воде

Лук, определение воды влияние размеров частиц

МПа, температуре до 70 С и содержании твердых частиц в воде до

Минеральные примеси воды размер частиц

Минеральные примеси воды форма частиц

Модель водо- и нефтегазоносной породы с дисперсным распределением глинистого материала, построенная с учетом физических свойств и геометрии дисперсных частиц

Морковь, определение воды влияние размера частиц

Морская вода коагуляция частиц

О роли граничных слоев воды в агрегативной устойчивости дисперсий гидрофильных частиц. — Е. В. Голикова, Ю. М. Чернобережский

Определение размеров частиц и кривой их распределения в эмульсии бензола в воде

Опыт I. Качественное доказательство вытеснения катионов щелочных металлов с поверхности стекла катионами водорода при обработке частиц стекла (стеклянного порошка) дистиллированной водой

Орбиты частиц воды на волне III

Очистка воды от твердых частиц

Подсчет частиц в воде

Практические работы Определение величины частиц и нахождение кривой их распределения в суспензии углекислого кальция в воде

Природные воды коагуляция частиц

Размер частиц влияние при экстрагировании воды из овощей

Размер частиц, влияние при экстрагировании воды из ячменного

Размер частиц, влияние при экстрагировании воды из ячменного солода

Размеры и массы частиц вещества. Энергия и закон ее сохранеКислород. Энергетика образования воды. Диаграммы состояний

Система кремнезем—вода и состава частиц

Система кремнезем—вода частиц

Стеклянные частицы псевдоожижение водой воздухом парафином

Структура распределения частиц воды на экране крионасоса

Сцепление частиц воды I жидкостей I стали и тверд

Сцепление частиц воды I жидкостей I стали и тверд веществ

Формы связи воды с частицами твердой фазы и их влияние на обработку осадков

Электроны, также Бета-частицы пробег в воде



© 2025 chem21.info Реклама на сайте