Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инфракрасная область

    В настоящее время нет надежных методов определения тиофе-нов в присутствии других сернистых соединений. Наиболее перспективными являются, очевидно, методы полярографии, а также оптические методы (анализ в инфракрасной области спектра и др.). [c.34]

    Гетероциклические соединения [79, 81, 154] могут присутствовать и в группе соединений основного характера и в группе соединений остаточного азота. Для качественного определения азотных гетероциклов в инфракрасной области можно пользоваться табл. 68 [79, 207]. Гетероциклические соединения с атомом азота в кольце, как правило, имеют характер вторичных аминов или иминов (пирролы, пиридины, хинолины). В их спектрах поглощения присутствуют полосы поглощения вторичных аминов или иминов, отличающихся, как уже говорилось, повышенной интенсивностью. Кроме того, присутствуют интенсивные полосы поглощения, соответствующие скелетным колебаниям кольца, валентным колебаниям замещенных колец, валентным и деформационным колебаниям водородного атома кольца. [c.134]


    Молекулы имеют электронные энергетические уровни, колебательные энергетические уровни и вращательные энергетические уровни. Переходы между вращательными уровнями попадают в микроволновую область спектра переходы между колебательными уровнями-в инфракрасную область, а переходы между электронными уровнями-в видимую и ультрафиолетовую области спектра. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния используются для наблюдения внутримолекулярных колебательных переходов. Поглощение света молекулами в видимой и ультрафиолетовой частях спектра обусловлено электронными переходами. График зависимости интенсивности этого поглощения от длины волны света называется спектром поглощения. [c.596]

    Дальнейшее исследование состава высококипящих нефтяных фракции в дополнение к обычно применяемым аналитическим методам включают новейшие методы анализа, такие, как хроматографию, спектроскопию в ультрафиолетовой и инфракрасной областях и в самое последнее время — масс-спектроскопию. [c.31]

    Предельные углеводороды. Возможность количественного структурногруппового анализа по спектрам поглощения в ближней инфракрасной области впервые была показана Розе в 1938 г. Интенсивности полос обертонов валентных колебаний связи углерод — водород были измерены для ряда к-парафинов, разветвленных парафинов, нафтенов и ароматических соединений. Ввиду того, что ни одна из этих полос не разрешается пол- [c.330]

    Все кислородсодержащие функциональные группы, входящие в состав органических молекул, интенсивно поглощают в инфракрасной области спектра и поэтому могут быть идентифицированы с большой легкостью и достоверностью. Валентным и деформационным колебаниям групп ОН, СООН, С=0, С—О—С, —0—0—, [c.143]

    Все оптические детали в приборах, используемых для измерений в видимой и ближней инфракрасной областях спектра, сделаны из стекла. При работе в ультрафиолетовой области применяется кварцевая оптика. Соответствующий материал используется и при изготовлении кювет. [c.470]

    Можно ли применить подобные рассуждения к молекулам Да, можно, причем двояко. Во-первых, из спектроскопии известно, что характеристические частоты электронов в молекулярных системах лежат в видимой и ультрафиолетовой областях спектра, тогда как частоты колебаний ядер — в инфракрасной области, так что (oj / u ) 100 и критерий адиабатичности для молекул выполняется (правда, как мы увидим далее, — не всегда). Во-вторых, слоистое строение электронных оболочек атомов и молекул позволяет разделить электроны на группы в зависимости от скорости их движения, так как периоды движения оптических (валентных) электронов и электронов остова существенно различаются. В настоящее время адиабатическое разделение быстрых и медленных электронов применяется главным образом в теории атомов, и мы о нем в дальнейшем говорить не будем, сосредоточив внимание на адиабатическом разделении электронных и ядерных движений. [c.109]


    Излучение короче 200 нм используется для проведения специальных работ в вакууме, так как различные компоненты воздуха поглощают в этой области длин волн. Далекая инфракрасная область используется. главным образом для изучения химического строения различных соединений. [c.459]

    Поскольку приборы СФ-4, СФ-4Д, СФД-2 имеют кварцевую оптику, возможность изучать спектры поглощения веществ в видимой, ультрафиолетовой и ближней инфракрасной областях спектра в интервале длин волн от 220 до 1100 нм. Для обеспечения заботы в широком интервале длин волн в приборах имеются два источника освещения водородная лампа для измерений в области 220—350 нм и лампа накаливания для измерений в области 320— 1100 нм. [c.474]

    На рис. 13-32 показана обобщенная диаграмма энергетических уровней произвольной молекулы. На ней изображены два электронных уровня, Еу и 2, а также относящиеся к ним колебательные и вращательные уровни. Обычно расстояния между электронными энергетическими уровнями намного превышают расстояние между колебательными уровнями, которые в свою очередь намного больше расстояний между вращательными уровнями. Электронные переходы молекулы (т. е. переходы с одного электронного уровня на другой) соответствуют поглощению или испусканию электромагнитного излучения в видимой и ультрафиолетовой частях спектра колебательные переходы соответствуют поглощению или испусканию излучения в ближней инфракрасной и инфракрасной областях спектра, вращательные переходы отвечают поглощению или испусканию излучения в дальней инфракрасной и более длинноволновых, вплоть до микроволновой, областях электромагнитного спектра. [c.585]

    Такую ситуацию хорошо демонстрирует рис. 13.16, где В—лиганд слабого поля, например Р " или Н,0, который вызывает образование высокоспинового комплекса. Параметр расщепления в нулевом поле О был измерен для нескольких систем такого типа путем изучения спектра в дальней инфракрасной области в магнитном поле. Для различных комплексов были получены значения в интервале 5 — 20 см" [40]. [c.242]

    Выделенные олефины (октоны) имеют полосу поглощения в инфракрасной области при 10,3 г, характерную для транс-олефинов. Более удивительным является сравнительно высокое (0,6%) содержание олефинов I легких бензинах. [c.26]

    В 1938 г. Розе [351 успешно разработал метод определения количества разветвленных цепей в углеводородах, основанный на изучении поглощения в инфракрасной области. С тех пор многие исследователи опубликовали данные, полученные этим методом. Создается впечатление, что изучение поглощения в инфракрасной области является самым обещающим методом для определения числа разветвленных цепей на молекулу. [c.372]

    В 1946 г. была опубликована статья Воге и Мэй [28], в которой сообщалось об измерениях равновесия реакции (IX). Применив спектральный метод анализа (исследование спектров поглощения в инфракрасной области), авторы имели возможность количественно определить в равновесных смесях содержание всех трех изомеров бутена с прямой цепью , т. е. бутена-1, г ыс-бутена 2 и транс-бутена-2. [c.309]

    Спектры поглощения в инфракрасной области (длина волны от 7,5 10 до 1,5 10" см) [c.189]

    Классическая физика преподнесла физикам большой сюрприз, когда они попытались объяснить свечение нагретого докрасна куска железа. Известно, что все твердые тела в сильно нагретом состоянии испускают излучение. Идеальное излучение, испускаемое телом с совершенными погло-шающими и излучающими свойствами, называется излучением абсолютно черного тела. На рис. 8-6,а показан спектр, т. е. график зависимости относительной интенсивности от частоты излучения, нагретого докрасна твердого тела. Поскольку большая часть его излучения приходится на красную и инфракрасную области частот, свечение предмета кажется красным. При повышении температуры максимум интенсивности смещается в сторону больших частот, и тогда светящийся предмет кажется оранжевым, затем желтым и, наконец, белым, если во всей видимой области спектра излучается достаточная энергия. [c.336]

    Ни одно физическое свойство не дает более точной информации о химическом строении углеводородов, чем спектр поглощения в инфракрасной области, особенно для простых алифатических соединений. Большинство полос поглощения возникает при резонансных вибрациях валентных связей и поэтому зависит от действительной инерции атомов и атомных групп в молекуле и сил между ними. В этой же области наблюдаются вращательные и вращательно-колебательные спектры, но они имеют меньшее значение [185]. Полосы, появляющиеся вследствие алифатических С—Н связей, особенно интересны, так как их частоты зависят от атомных весов атомов, с которыми связаны три другие валентности углерода [186—190]. [c.189]


    В пидимой и ультрафиолетовой областях спектра. Энергии колебательных переходов (10 1—10 эВ) соответствует излучение (поглощение) в ближней инфракрасной области. Наименьшую величину имеют энергии вращательных переходов молекул (10 —10 эВ)  [c.144]

    Для измерения длины волны применяются различные единицы длины. В инфракрасной области наиболее удобной единицей является микрон (1 X 10 см). Частота моягет быть также выражена числом колебаний в секурщу илп числом длин волн на единицу длины. Это так называемое волновое число. На практике волновые числа выражаются в обратных сантиметрах (см ). Чаще всего при обсуждении колебательных спектров молекул встречается термин волновое число в см , так как этот термин применим как к инфракрасным спектрам, так я к спектрам комбинационного рассеяния. При обсуждении результатов исследований в инфракрасной области длины волн принято выражать в микронах. [c.314]

    Поглощаемость меняется для олефинов, циклопарафинов и ароматических соединений. Очень часто может быть получена количественная информация об особых структурных элементах, даже если спектры слишком сложны для индивидуального анализа соединений. Используя характеристические частоты, установили методы [191—193] для группового анализа предельных углеводородов и предельно-ароматических смесей. Если известно общее содержание олефина, то типы олефинов могут быть установлены по данным спектров [196]. Для индивидуальных соединений в ароматической части сырого бензина [197], кипящих до 193° С, могут быть сделаны анализы, использующие технику разделения совместно со спектрами поглощения в инфракрасной области подобный же метод был предложен для парафино-нафтеновых смесей [198], кипящих до 132° С. Очень полезны обширные каталоги спектров чистых соединений, и многие специальные анализы возможны на базе стандартов [199]. [c.189]

    Комбинационное рассеяние (эффект Рамана) дает такие же сведения, как и прямая спектроскопия в инфракрасной области. Это является следствием основного закона Рамана  [c.189]

    Для этого требуется высокая разрешающая сила спектроскопической системы однако в видимой области может быть применен свет, и экспериментальная часть обычно проще, чем для инфракрасной области. Так как и эффект Рамана, и спектр в инфракрасной области возникают от колебания или от вращения и колебания внутри молекулы, то они являются добавочными. Для систематического сравнения двух методик необходимо просмотреть обширные обзоры [200]. [c.190]

    Ароматические углеводороды фракции 150—180° С исследовали методом газо-жидкостной хроматографии, а углеводороды фракции 180—200° С разгоняли на колонке четкой ректификации на узкие 2—5-градусные фракции и идентифицировали по спектрам поглощения в ультрафиолетовой и инфракрасной областях. [c.5]

    Это изменение цвета обязано усилению поля лигандов в ряду OHj—NH3—еп, вызывающему смещение полосы поглощения из далекой красной в среднюю красную область спектра. (Максимум поглощения иона [Си(ОН2)бР " наблюдается при 800 нм, а у [Си(ЫНз)4(ОН2)2] " — при 600 нм). С другой стороны, USO4 бесцветен, так как поле иона 50Г настолько слабое, что d— -переходу отвечает поглощение в инфракрасной области. [c.628]

    Начальная скорость появления N1 02 дается выражением (N 65), где Ф — мольная доля N1 в N205 (за N1 02 следили спектрофотометрически в инфракрасной области). При 27° в присутствии СО2 (около 500 мм рт. ст.) ку была равна примерно 0,5 сек-1, а константа скорости составляла 4-10 5 сек 1 для общего разложения. При давлении СО2, равном 50 мм рт. ст., ку была равна примерно 0,1 сев 1. Такие быстрые скорости трудны для изучения относительно медленно регистрирующим инфракрасным спектрографом, п эти данные являются полуколичественными. [c.355]

    Эванс, Хиббард и Поуэл [7] изучали спектры поглощения в ближней инфракрасной области (1,10—1,23 и) различных парафиновых и циклопарафиновых углеводородов, содержащих от 13 до 34 углеродных атомов, а также некоторых смазочных масел, освобожденных от ароматических углеводородов адсорбцией. При этом было обнаружено замечательное сходство между спектрами насыщенных (свободных от ароматики) смазочных масел и некоторыми производными циклопентана такого же молекулярного веса. В итоге авторы пришли к выводу о том, что имеется убедительное доказательство того, что насыщенные фракции смазочных масел содержат большое количество циклсшентановых колец . [c.33]

    Данные, опубликованные Чарлетом и др., а также Лиллардом и др., убедительно свидетельствуют о том, что по крайней мере у ароматических углеводородов в высококипящих нефтяных продуктах преобладают конденсированные структуры. В настоящее время нельзя сделать определенных выводов о структуре имеющихся в нефти высокомолекулярных циклопарафиновых углеводородов. Предположение о конденсированной структуре полициклических циклопарафиновых углеводородов нефти, принятое многими авторами, представляется вероятным, но не окончательным. Поглощение в инфракрасной области спектра при 10,4 //, часто наблюдав-3  [c.35]

    Распределение и структура парафиновых боковых цепей в тяжелых нефтяных фракциях изучены совершенно недостаточно. Присутствие длинных парафиновых боковых цепей нормальной (линейной) структуры (выше С а) по крайней мере в товарных смазочных маслах с низкой температурой застывания, по-пидимому, невозможно. Известные алкиларомати-ческие и циклопарафиновые углеводороды с длинной нормальной боковой цепью обладают высокими температурами плавления и могут быть отделены от твердого парафина при помощи дспарафинизации. Алкилциклические углеводороды с длинными разветвленными парафиновыми боковыми цепями должны иметь низкую температуру застывания и могут встречаться в смазочных маслах. Однако более вероятно, что атомы углерода в боковых цепях распределяются между несколькими боковыми цепями. В настоящее время исследование спектров поглощения в инфракрасной и в ближней инфракрасной области служит единственным методом, который может дать известное представление о распределении парафиновых боковых цепей, по определению среднего числа СНд-, СН - и СН-групп, приходящихся на одну молекулу. [c.37]

    В этой главе рассматриваются методы определения строения молекул углеводородов и вычослеиия термодинамаческих величии при помощи спектров поглощения в инфракрасной области и спектров комбинационного рассеяния. Применение этих методов позволило внести сущестненвый иклад в развитие химии углеводородов. [c.292]

    Разности энергий, соответствующих электронным уровням, относительно велики, и поэтому излучение, поглощаемое при переходах с одного такого уровня на другой, лежлт в далекой ультрафиолетовой области спектра. Разности энергий колебательных уровней меньше, и излучение, поглощаемое при колебательных переходах, лежит в инфракрасной области (примерно от 3 до 50 / ). Разности энергий вращательных уровней малы, и поэтому чисто вращательный спектр лежит в далекой инфракрасной и микроволновох областях. Схематическая диаграмма уровней дава на рис. 1. [c.293]

    Современные процессы переработки нефти основываются на исследовании углеводородного состава нефти и нефтепродуктов. В настоящее время наиболее надежным методом исследования химического состава является изучение колебательных спектров молекул. Основные принципы этого метода известны уже давно. Еще в 1800 г. Гершелем 122] было открыто излз ение, лежащее за длинноволновым пределом человеческого зревия. Ранние исследования были весьма ограничены вследствие применения приборов с различной дисперсией и различных способов регистрации излучения Б инфракрасной области. Однако уже в первых работах было замечено, чтс прозрачность так называемых бесцветных веществ зависит от частоты излучения. Иными словами, если бы глаз был чувствителен к энергии, излучаемой в инфракрасной области спектра, то эти вещества обладали бы цветом. [c.312]

    Приборы, применяемые для инфракрасной спектроскопии. В исчерпывающем обзоре Вильямса [481 описан ряд приборов для получения спектров в инфракрасной области, а также изложены общие методические положения. В обзоре Шеппарда [391 содержится описание более поздних усовершенствований. Поэтому здесь приборы подробно не рассматриваются. Обычно инфракрасный спектр получается пзггем пропускания через вещество излучения горячего тела с последующим -изучением прошедшей энергии для определения той ее части, которая поглощается веществом. На рис. 1 приведена простая схема типового однолучевого регистрирующего инфракрасного спектрофотометра. Он состоит из источника радиации, чаще всего раскаленного штифта из окислов металлов или карбида кремния, нагреваемого электрическим током. Сферическим зеркалом излучение фокусируется на входную щель 3 , впереди которой устанавливается кювета, содержащая вещество. Коллиматорное зеркало делает пучок параллельным, после чего он дважды проходит через призму назад на [c.313]

    До настоящего времени большинство исследований, выполненных в инфракрасной области, охватывает интервал длин волн от 2 до 16 /л (т. е. от 5000 до 600 см ). В этой области можно работать с оптикой из кристаллического хлористого натрия. Для увеличения дисперсии в области коротких длин волн применяют фтористый литий (от 2 до 5 /г) и фтористый кальций (от 2 до 8 /г). Для длинновол овой области (до 24 /г) используется оптика из бромистого калия, а до 40 /л — из бромистого цезия. [c.314]

    Хиббард и Кливз [23], а также Лауэр и Розенбаум [27] воспользовались для определения ароматических С—Н-групп близкой инфракрасной областью. В последних сообщениях указывается, что эта группа может быть успешно определена даже в различных циклических системах, таких, как бег золы, нафталины и фенантрены. [c.333]

    Талл Г1 и его соединения имеют небольшое по объему, но разнообразное применение. Галогениды таллия хорошо пропускают инфракрасные лучи. Поэтому они используются в оптических приборах, работающих в инфракрасной области спектра.. Карбонат таллия служит для изготовления стекол с высокой преломляющей способностью. Таллн т входит в состав вещества электрода селе нового выпрямителя, является активатором многих люминофоров. Сульфид таллия используется в фотоэлементах. Металлический таллий — компонент многих свинцовых сплавов подшипниковых, кислотоупорных, легкоплавких. [c.639]

    При более внимательном рассмотрении спектра испускания водорода, изображенного на рис. 8-8, можно различить в нем три отдельные группы линий. Эти три группы, или серии, линий пoлyчиJШ каждая свое особое название по имени открывших их ученых. Серия, начинающаяся при 82259 см и продолжающаяся до 109678 см располагается в ультрафиолетовой части спектра и носит название серии Лаймана. Серия, начинающаяся при 15 233 см и продолжающаяся до 27 420 см занимает большую часть видимой области и небольшую часть ультрафиолетовой области спектра и называется серией Бальмера. Линии, расположенные между 5332 и 12 186 см в инфракрасной области спектра, составляют серию Пашена. На рис. 8-9 показаны бальмеровские серии спектра атомарного водорода, полученные от некоторых звезд. [c.340]


Смотреть страницы где упоминается термин Инфракрасная область: [c.470]    [c.470]    [c.37]    [c.353]    [c.133]    [c.34]    [c.35]    [c.38]    [c.300]    [c.333]    [c.500]    [c.68]    [c.251]    [c.433]   
Смотреть главы в:

Оптика спектральных приборов -> Инфракрасная область




ПОИСК







© 2025 chem21.info Реклама на сайте