Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликолиз в условиях аэробных

    Ряд культур дрожжей, в том числе Sa haromy es, в условиях недостаточного обеспечения среды кислородом и при наличии углеводов получают энергию путем анаэробного расщепления сахаров (гликолиз) при этом образуется этанол. Как только в среде появляется кислород, клетки дрожжей сразу переключаются на энергетически более выгодный аэробный метаболизм (Пастеровский эффект) и способны метаболизировать не только глюкозу, но и накопившийся в среде этанол. Усваивать этанол дрожжи могут благодаря наличию в их клетках фермента алько-гольдегидрогеназы (рис. 41). [c.106]


    Молочная кислота образуется в мышцах в анаэробных условиях и является конечным продуктом гликолиза. Количество образовавшейся молочной кислоты эквивалентно количеству распавшейся глюкозы. Установлено, что содержание молочной кислоты в крови человека и животных повышается после мышечной работы. Особенно резкое увеличение количества молочной кислоты наблюдается после усиленных мышечных упражнений. Однако уровень молочной кислоты в крови быстро снижается, так как она поглощается печенью и превращается там в гликоген. Ресинтез гликогена из молочной кислоты не может протекать самопроизвольно и осуществляется только при условии сопряжения его с окислительными процессами, дающими энергию. По данным Пастера и Мейергофа, ресинтез гликогена сопряжен с окислением некоторой части молочной кислоты до углекислого газа и воды. Основная масса молочной кислоты при этом превращается в гликоген. В настоящее время установлено, что в аэробных условиях при достаточном притоке кислорода гликогек и глюкоза окисляются через стадию пировиноградной кислоты до СОг и Н2О, минуя образование молочной кислоты (см. стр. 172). [c.254]

    В аэробных условиях конечным продуктом гликолитического расщепления является пируват и две молекулы НАДН, образовавшиеся в результате окисления двух молекул глицеральдегид-З-фосфата [реакция (6) гликолиза] последние окисляются до НАД , отдавая свои электроны в митохондриальную цепь переноса электронов (см. рис. 18.4). Таким образом, к суммарному итогу гликолиза (две молекулы АТФ) добавляется еще шесть молекул АТФ, образующихся в результате окислительного фосфорилирования. Следовательно, баланс АТФ при гликолитическом расщеплении глюкозы в аэробных условиях составляет 8 молекул АТФ, из них 2 молекулы АТФ образовались за счет субстратного, а 6 — окислительного фосфорилирования. [c.250]

    Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода носит название эффекта Пастера. Впервые это явление наблюдал Л. Пастер во время своих широко известных исследований роли брожения в производстве вина. В дальнейшем было показано, что эффект Пастера наблюдается также в животных и растительных тканях, где кислород тормозит анаэробный гликолиз. Значение эффекта Пастера, т.е. перехода в присутствии кислорода от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на наиболее эффективный и экономичный путь получения энергии. В результате скорость потребления субстрата, например глюкозы, в присутствии кислорода снижается. Молекулярный механизм эффекта Пастера заключается, по-ви-димому, в конкуренции между системами дыхания и гликолиза (брожения) за АДФ, используемый для образования АТФ. Как известно, в аэробных условиях значительно эффективнее, чем в анаэробных, происходят удаление и АДФ, генерация АТФ, а также регенерирование НАД, окисленного из восстановленного НАДН. Иными словами, уменьшение в присутствии кислорода количества и АДФ и соответствующее увеличение количества АТФ ведут к подавлению анаэробного гликолиза. [c.353]


    В аэробных условиях реакции гликолиза, остановившиеся на стадии образования пирувата (непосредственного предшественника лактата), составляют первую, начальную фазу деструкции углеводов, связанную далее с циклом трикарбоновых кислот. Гликолиз и цикл трикарбоновых кислот приводят к полному окислению глюкозы до СО2 и вьщелению больших количеств метаболической энергии (АТФ). [c.243]

    Превращения глюкозы и гликогена в нервной ткани. Обмен углеводов в нервной ткани отличается, как мы видели, тем, что исходным субстратом в реакциях превращения углеводов нервной ткани является в основном глюкоза. Промежуточным продуктом окисления глюкозы является пировиноградная кислота, дальнейшие превращения которой были нами рассмотрены ранее (стр. 260). Гликолитический механизм превращения углеводов в мозгу может быть источником энергии как в аэробных, так и в анаэробных условиях, поскольку в мозгу обнаружен интенсивно протекающий не только анаэробный, но и аэробный гликолиз. [c.407]

    Поскольку АТФ необходим для осуществления мн. процессов, требующих затраты энергии (биосинтез, совершение мех. работы, транспорт в-в и др.), О.ф. играет важнейшую роль в жизнедеятельности аэробных организмов. Образование АТФ в клетке происходит также благодаря др. процессам, напр, в ходе гликолиза и разл. типов брожения, протекающих без участия кислорода. Их вклад в синтез АТФ в условиях аэробного дыхания составляет незначит. часть от вклада О.ф. (ок. 5%). [c.338]

    Таким образом, в тканях, функционирующих в условиях гипоксии, наблюдается образование лактата. Это особенно справедливо в отношении скелетной мышцы, интенсивность работы которой в определенных пределах не зависит от поступления кислорода. Гликолиз в эритроцитах даже в аэробных условиях всегда завершается образованием лактата, поскольку в них отсутствуют митохондрии, содержащие ферменты аэробного окисления пирувата. [c.247]

    В анаэробных условиях гликолиз —единственный процесс в животном организме, поставляющий энергию. Именно благодаря гликолизу организм человека и животных определенный период может осуществлять ряд физиологических функций в условиях недостаточности кислорода. В тех случаях, когда гликолиз протекает в присутствии кислорода, говорят об аэробном гликолизе .  [c.328]

    Клетки, недостаточно снабжаемые кислородом, могут частично или полностью существовать за счет энергии гликолиза. Однако больщинство животных и растительных клеток в норме находится в аэробных условиях и свое органическое топливо окисляет полностью до СО, и Н,0. В этих условиях пируват, образовавщийся при расщеплении глюкозы, не восста- [c.343]

    Клеточное дыхание включает три стадии 1) окислительное образование аце-тил-СоА из пирувата, жирных кислот и аминокислот, 2) расщепление ацетильных остатков в цикле лимонной кислоты, в результате которого образуются Oj и атомы водорода, и 3) перенос электронов на молекулярный кислород, сопряженный с окислительным фосфорилированием ADP до АТР. При окислительном катаболизме глюкозы выделяется гораздо больше энергии, чем при анаэробном гликолизе. В аэробных условиях конечный продукт гликолиза прируват подвергается сначала дегидрированию и декарбоксилированию с образованием ацетил-СоА и Oj. Катализирует этот [c.502]

    Гликолитический механизм превращения углеводов в мозгу может быть источником энергии как в аэробных, так и в анаэробных условиях, поскольку в мозгу обнаружен интенсивно протекающий не только анаэробный, но и аэробный гликолиз. [c.431]

    Определенная конкуренция ферментов гликолиза и дыхания за неорганический сфат и АДФ — один из механизмов эффекта Пастера. Поскольку ферменты дыхания имеют большее сродство к неорганическому фосфату и АДФ, процессы гликолиза в аэробных условиях тормозятся. [c.221]

    Опыт действительно показывает, что только немногие ткани (энергично работающая мышца, сетчатка, быстро двигающиеся семенные клетки, быстро растущие злокачественные ткани) обладают способностью к аэробному гликолизу. Подавляющее большинство других клеток и тканей глико-лизирует только в анаэробных условиях. [c.272]

    При изучении регуляции энергетического обмена клетки отправным пунктом, на котором обычно строится исследование, является открытый Пастером феномен подавления менее эффективного в энергетическом отношении брожения более эффективным дыханием. Выяснению механизма этого регуляторного феномена посвящены многочисленные глубокие исследования и покоящиеся на этих исследованиях плодотворные гипотезы. Весьма существенно, однако, что объектом такого рода исследований обычно служат переживающие in vitro интактные клетки — взвеси свободных клеток или срезы тканей. Эти интактные клетки в момент исследования в функциональном отношении находятся в состоянии относительного покоя, и очевидно вследствие этого пастеровский эффект (П. Э.) выражен у них в полной мере. Если же проследить метаболизм таких же клеток или клеток других животных тканей в условиях активно функционирующего целого организма, то оказывается, что их энергетический обмен характеризуется не пастеровским торможением гликолиза, а как раз обратным состоянием — сосуществованием дыхания иаэробного гликолиза. Многие авторы проходят мимо этого факта, хотя хорошо известно, что все ткани животного организма при напряженной работе in situ обнаруживают наряду с повышенным поглощением кислорода высокий аэробный гликолиз, иногда в 1000 раз превосходящий по скорости тот уровень гликолиза, который отмечается в покоящейся ткани. [c.106]


    Удобным объектом для демонстрации гликолиза может служить мышечная кашица или мышечный экстракт. Экстракт не обнаруживает пастеровского эффекта, вследствие чего можно работать в аэробных условиях. В случае кашиц необходима изоляция от кислорода воздуха (вазелиновое масло). [c.153]

    Механизм угнетения брожения дыханием может быть, однако, и иным. Установлено, что активность ряда ферментов брожения (и гликолиза) резко снижается в аэробных условиях. Это приводит к переключению обмена на аэробный путь, который по своему механизму отличается от анаэробного расщепления углеводов. [c.258]

    Прижизненные биохимические процессы в мышце, изучавшиеся А. В. Прлладиным, В. Энгельгардтом и М. Любимовой, Д. Фердманом, В. А. Белицером и другими советскими исследователями, связаны с физиологическим актом мышечного сокращения и заключаются в реакциях гликолиза, ресинтеза мышечного гликогена, распада и ресинтеза креатинфосфата и АТФ и изменениях сократительного белкового вещества мышцы. При этом молочная кислота, образующаяся при утомлений мышцы, в результате реакций гликолиза при отдыхе мышцы в аэробных условиях частью (около одной пятой) подвергается полному окислительному распаду, а в большей своей части превращается снова в гликоген за счет энергии реакций аэробного окисления. Одновременно с реакциями гликолиза наблюдается распад АТФ и АДФ и затем креатинфосфата, что приводит к накоплению неорганических фосфатов. При отдыхе мышцы происходит ресинтез этих соединений, требующий энергии. Таким образом, наблюдается тесная связь между реакциями анаэробного и аэробного обмена в мышце, выражающаяся в том, что в аэробных условиях в мышце анаэробный распад углеводов замедлен. [c.234]

    Средние данные из девяти опытов показали, что одна РФ образует 19 мкг лактата на пробу, РФ в присутствии секрета, полученного на воздухе, дает 25 мкг лактата на пробу, гликолиз же РФ с добавлением секрета, полученного в анаэробных условиях, составляет уже 30 мкг лактата на пробу, т. е. больше, чем в аэробных условиях. [c.112]

    Гликолиз— это последовательность десяти ферментативных реакций, в процессе которьгх в аэробных условиях глюкоза расшепляется до двух молекул пирувата (аэробный гликолиз), а в анаэробных — до двух молекул лактата (анаэробный гликолиз). Ниже приведены стехиометрические уравнения процессов анаэробного (а) и аэробного (б) гликолиза  [c.243]

    В ряде опытов определяли внутриклеточное содержание минерального фосфора и АТФ. Для этого пластинки отделяли от суспензионной среды центрифугированием, промывали рх, надосадочную жидкость отбрасывали и после осаждения белков трихлоруксусной кислотой определяли содержание минерального фоа ра и АТФ указанными выше методами. После инкубации взвеси пластинок в атмосфере кислорода или азота при добавлении глюкозы содержание АТФ внутри клеток или не изменялось или несколько увеличивалось. Если можно говорить о том, что в анаэробных условиях постоянство содержания АТФ поддерживается посредством гликолиза, то в аэробных условиях ресинтез аденозинтрифосфата может осуществляться как при протекании окислительных процессов, так и аэробного гликолиза. Для получения данных о ресинтезе АТФ за счет окислительных процессов необходимы условия, исключающие одновременно идущий гликолиз. Представлялось наиболее целесообразным провести исследование окислительного фосфорилирования на изолированных митохондриях пластинок [14.  [c.137]

    Основные пути катаболизма углеводов в мышце устрицы сходны с представленными на рис. 11. Эта мышца, подобно скелетным мышцам позвоночных, обладает высокой способностью к гликолизу и извлекает значительную часть необходимой энергии из гликогена. При аэробных условиях обмен гликогена (с промежуточным образованием глюкозо-6-фосфата) протекает в основном так же (если не точно так же), как и в мышцах позвоночных, Образующийся фосфоенолпируват превращается в пируват, который затем включается в цикл Кребса. В пользу этой схемы говорят данные, полученные в исследованиях троякого рода 1) обнаружены соответствующие промежуточные продукты 2) установлено существование надлежащих ферментов  [c.61]

    Что же касается механизма реакции Пастера, то он остается еще недостаточно выясненным, хотя для его объяснения существует ряд гипотез. Одна из этих гипотез указывает на то, что прекращение гликолиза при аэробных условиях является скорее кажущимся, чем действительным. В присутствии кислорода в некоторых тканях, например в мышечной, часть образующейся при гликолизе молочной кислоты окисляется до углекислого газа и воды с освобождением энергии, которая используется частично для ресинтеза из оставшейся части молочной кислоты гликогена. Следовательно, в этом случае в тканях образование молочной кислоты не прекраш.ается в присутствии кислорода. Сбережение запасов гликогена достигается тем, что некоторая, и при этом большая, часть образовавшейся молочной кислоты в присутствии кислорода снова превращается в гликоген. Другие гипотезы объяс 1яют реакцию Пастера тем, что кислород прекращает гликолиз, воздействуя на ферменты, катализирующие тот пли иной этап гликолиза, прекращая, или тормозя, их действие. Некоторые ферменты гликолиза содержат важные для проявления их действия сульфгидрильные группы (—5Н). Среди этих ферментов находится и дегидраза фосфоглицеринальдегида. Кислород окислением сульфгидрильных групп ферментов может приостановить гликолиз. [c.298]

    Основной путь катаболизма углеводов включает в себя гликолиз моносахаридов - О-глюкозы и В-фруктозы, источниками которых в растениях служат сахароза и крахмал. Гликолизом называют расщепление молекулы гексозы на два Сз-фрагмента (схема 11.26). В итоге образуются две молекулы пировиноградной кислоты, а выделяющаяся энергия запасается в двух молекулах АТФ, синтез которых произошел в результате так называемого субстратного фосфорилирования молекул АДФ. Для регенерирования НАД, участвующего в гликолизе, молекулы его восстановленной формы должны отдать полученные от субстрата окисления электрон и протон. В роли их акцептора в обычных для растений аэробных условиях выступает молекулярный кислород. Выделяющаяся при переносе электронов от НАДН к О2 энергия также используется для фосфорилирования АДФ, которое называют окислительным фосфорилирова-нием. Это дает дополнительно еще 4 молекулы АТФ. [c.338]

    Остановимся теперь на функциях последнего этапа пути. Как механизм, обеспечивающий полную деградацию углеводов, этот путь не получил универсального распространения, хотя есть эубактерии, осуществляющие разложение углеводов в аэробных условиях только по окислительному пентозофосфатному пути. У многих организмов, использующих пентозы в качестве субстратов брожения, окислительный пентозофосфатный путь служит для превращения пентоз в гексозы, которые затем сбраживаются в гликолитическом пути. Кроме того, выще мы упоминали о двух точках пересечения этого пути с гликолизом на этапах образования 3-ФГА и фруктозо-6-фосфата. Все это говорит о тесном контакте окислительного пентозофосфатного пути с гликолизом и о возможном переключении с одного пути на другой. Наконец, помимо пентоз, образующихся на начальных этапах пути, возникновение С4- и С7-сахаров в транскетолазной и трансальдолазной реакциях также представляет определенный интерес для клетки, так как эти сахара являются исходными субстратами для синтеза ряда важных клеточных метаболитов. [c.257]

    Разложение целлюлозы в аэробных условиях приводит к последующему метаболизированию глюкозы в системе катаболиче-ких процессов (гликолиз — ЦТК) с поступлением водорода (электронов) в дыхательную цепь и переносу их на О2. [c.404]

    В аэробных условиях, когда регенерация NAD происходит в результате окисления NAD-H кислородом в цепи переноса эле <тронов, к этому скромному итогу сразу добавляется еще шесть молекул АТФ, образуюни1хся результате окислительного фосфорилирования двух молекул NAD-И. Столько же молекул АТФ образуется в результате появления еще двух молекул NAD-H при функционировании пируватдегидрогеназного комплекса. С учетом сопутствующего фосфорилирования АДФ стехиометрические уравнения для трех вариантов гликолиза можно записать в виде [c.350]

    Разделение на анаэробный и аэробный гликолиз носит условный характер, так как реакции гликолиза в присутствии кислорода и его отсутствии одни и те же. Различия касаются лишь их скорости и конечных продуктов. При недостатке кислорода реокисление НАДН, образовавшегося в ходе гликолиза, осушествляется путем сопряжения с восстановлением пирувата в лактат, а в аэробных условиях НАДН окисляется в ходе кислородзависимого процесса окислительного фосфорилирования (гл. 15), результатом которого является образование большого количества АТФ. [c.243]

    Другое возможное объяснение заключается в том, что эффект Пастёра вызывается конкуренцией между гликолизом и окислительным фосфорилированием, за неорганический фосфат. В аэробных условиях фосфорилирование в дыхательной цепи снижает содержание неорганического фосфата до такого уровня, при котором окисление триозофосфата ограниченно. [c.246]

    С мышечным экстрактом гликолиз можно вести в аэробных условиях. Процесс обнаруживается по накоплению углекислого газа, вытесненного молочной кислотой из бикарбоната. Молочная кислота может быть обнаружена также при помощи описанной выше реакции с вератролом. [c.156]

    Важная роль пирувата в катаболизме углеводов определяется тем, что это соединение лежит в точке пересечения различных катаболических путей. При аэробных условиях в животных тканях продуктом гликолиза является пируват, а NADH, образовавшийся в ходе окисления глицеральдегид-З-фосфата, реокис-ляется (т. е. снова превращается в NAD ) за счет молекулярного кислорода (гл. 17). Иначе обстоит дело в анаэробных усло- [c.454]

    В аэробных условиях продуктом гликолитического расщепления глюкозы оказывается не лактат, а пируват. В этих условиях NADH, образовавшийся в результате окисления двух молекул глицеральдегид-З-фосфата, вновь окисляется не за счет пирувата. Суммарное уравнение гликолиза в этом случае имеет вид [c.455]

    Скорость гликолиза в нормальных условиях согласована со скоростью функционирования цикла лимонной кислоты в клетке до пирувата расщепляется ровно столько глюкозы, сколько необходимо для того, чтобы обеспечить цикл лимонной кислоты топливом , т. е. ацетильными группами ацетил-СоА. Ни пируват, ни лактат, ни ацетил-СоА обычно не накапливаются в аэробных клетках в больших количествах их концентрации поддерживаются на некоем постоянном уровне, соответствующем динамическому равновесию. Согласованность между скоростью гликолиза и скоростью функционирования цикла лимонной кислоты объясняется не только тем, что первый процесс ингибируется высокими концентрациями АТР и NADH, т.е. компонентами, общими для гликолитической и дыхательной стадий окисления глюкозы определенную роль в этой согласованности играет также и концентрация цитрата. Продукт первой стадии цикла лимонной кислоты-цитрат-является аллостерическим ингибитором фосфофруктокиназы, катализирующей в процессе гликолиза реакцию фосфорилирования фруктозо-6-фосфата (разд. 15.13 и рис. 15.15). [c.495]

    Для того чтобы два тесно сопряженных между собой процесса—перенос электронов и гликолиз, каждый из которых нуждается в АДФ,— могли функционировать непрерывно, количество АДФ в системе должно быть достаточно большим. Если отношение АДФ/АТФ в клетке понизится, то замедление реакции должно, по-видимому, начаться сначала в той системе, которая обладает меньшим сродством к АДФ. Поскольку ферменты системы гликолиза имеют более высокую константу Михаэлиса для АДФ, чем ферменты дыхательной цепи, то можно предсказать, что в аэробных условиях, когда АДФ легко превращается в АТФ в ходе реакции окислительного фосфорилирования, процесс гликолиза начнет замедляться и затем совсем прекратится. Подавление брожения воздухом фактически впервые обнаружил Пастер. Однако высказывались и другие предположения относительно механизма этого явления, получившего название эффекта Пастера. Так, например, ортофосфат требуется для окислительного фосфорилирования и в то же время служит субстратом для гликолити чес кого фермента глицеральдегид-З-фосфатдегидрогена-зы. Следовательно, убыль фосфата в результате окислительного фосфорилирования может привести к торможению гликолиза. Другая интерпретация эффекта Пастера вытекает из попытки ответить на вопрос почем,у злокачественные ткани образуют в аэробных условиях в значительных количествах лактат, в то время как нормальные ткани этим свойством не обладают В этом случае происходит нарушение того механизма регуляции, с которым мы уже познакомились. Этот эффект можно объяснить по аналогии [c.55]

    Быть может, уместно именно здесь рассмотреть те факторы, которые (в кивотных клетках) играют главную роль в регулировании распада и ресинтеза глюкозы (и гликогена), иными словами, факторы, регулирующие обмен этих соединений. В общем можно считать, что во всех клетках, способных расщеплять глюкозу как в присутствии, так и в отсутствие кислорода, этот углевод исчезает (а лактат или же любой другой продукт анаэробного гликолиза или брожения накапливается) в анаэробных условиях быстрее, чем в аэробных. Это торможение гликолиза кислородом, впервые подмеченное Пастером, а впоследствии подтвержденное Мейергофом и Варбургом, известно под названием эффекта Пастера. Другое явление было открыто А. Хиллом в экспериментах с мышцей. Хилл обнаружил, что ресинтез гликогена и вообще углеводов протекает быстрее в аэробных условиях. Позднее это было доказано и для других тканей и клеток. [c.300]

    В опытах других авторов [13, 15], проведенных, правда, не на митохондриальной среде, а на целых митохондриях, также было найдено, что эффект повьшхения гликолиза в анаэробных условиях выражен сильнее, чем в аэробных. [c.112]

    Результаты определения гликолиза за 2 часа инкубации при 37° (в мг накапливающейся молочной кислоты на 1 мл плотно отцен-трифугированных клеток) показали, что пластинки характеризуются способностью гликолизировать в анаэробных, а также в аэробных условиях, причем в условиях анаэробиоза гликолиз значительно интенсивнее (табл. I). [c.132]

    Ничего еще не известно о механизмах образования СО2 в период аноксии у таких рыб. Две очевидные возможности связаны с реакциями пнруватдегидрогеназы и а-кетоглутаратдегидрогеназы, которые, по-видимому, крайне эффективно сопряжены у гельминтов и моллюсков с реакциями ацетат- и сукци-нат-тиокиназы соответственно. а-Кетоглутаратный путь стал также важным анаэробным путем декарбоксилирования в корковом веществе почек млекопитающих в условиях, при которых аэробный обмен должен быть вытеснен анаэробным синтезом АТФ. Коэн показал, что в почечных канальцах этот путь дает примерно столько же АТФ, сколько его дает гликолиз (в расчете на единицу веса ткани) таким образом, этот путь доставляет существенную часть энергии, необходимой для различных [c.75]

    Механизм переноса Ог в полость пузыря связан со второй системой капилляров, находящейся уже в самом эпителии этого органа (рис. 110). Кровь попадает здесь в условия высокой кислотности, которую поддерживает весьма активная система аэробного гликолиза в эпителиальных клетках. Гликолитические ферменты этой ткани эффективно функционируют при высоких напряжениях Ог. Эффект Пастера (торможение гликолиза при высоком напряжении Ог) здесь отсутствует — либо благодаря особой форме фосфофруктокпназы, нечувствительной к ингибированию продуктами аэробного обмена, либо потому, что интенсивность аэробного обмена очень низка. Как бы то ни было, наблюдаемое закисление крови, поступающей в капилляры эпителия, вполне может быть отнесено за счет образования молочной кислоты. Кроме того, в эпителии имеется высокоактивная карбоангидраза, которая, по-видимому, способствует образованию нонов Н+. [c.355]


Смотреть страницы где упоминается термин Гликолиз в условиях аэробных: [c.330]    [c.64]    [c.317]    [c.152]    [c.135]    [c.246]    [c.254]    [c.55]    [c.287]    [c.86]    [c.88]   
Биологическая химия Изд.3 (1998) -- [ c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Аэробные условия

Гликолиз

Гликолиз аэробный

аэробные



© 2025 chem21.info Реклама на сайте