Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементный состав нефтей и газов

    Элементный состав нефтей и газов [c.59]

    Элементный и изотопный состав нефтей и природных газов [c.11]

    В справочнике представлены физико-химические характеристики нефтей, их элементный состав, углеводородный состав газов, растворенных в нефтях, данные о потенциальном содержании фракций н. к. — 450—500 °С, качестве товарных нефтепродуктов или их компонентов, приведены характеристики дистиллятов, которые могут служить сырьем для каталитического риформинга и каталитического крекинга, и остатков — сырья для деструктивных процессов. В книге содержатся также данные о групповом углеводородном составе фракций н. к. — 450—500 °С и индивидуальном составе бензиновых фракций. [c.4]


    Элементный и групповой углеродный состав нефти, газа и других горючих ископаемых, классы углеводородов  [c.223]

    Определить поверхность радиантных труб двухкамерной печи с двухрядным экраном для нагрева 250 000 кг/ч нефти (di" =0,870) от 160 до 350 °С. Массовая доля отгона на выходе из печи е = 0,55. Плотность паров d o=0,807, жидкого остатка di" =0,967. Элементный состав топлива (в % масс.) 81,5 С и 18,5 Н. Принять при расчете коэффициент избытка воздуха а=1,2 потери тепла излучением 4% от теплоты сгорания топлива температуру газов, уходящих из печи, /ух = 350°С температуру на перевале / = = 850 °С температуру воздуха /в=20°С к. п. д. топки г1т=0,95 диаметр труб 152 мм полезную длину труб 17,5 м степень экранирования ф = 0,36 фактор формы /(=1,72. [c.108]

    Первоначально исследованием элементного состава нефтей занимались геохимики - с целью доказательства теорий происхождения нефти и закономерностей миграции нефтяных месторождений, затем - химики-органики и нефтехимики. Были накоплены обширные данные о количественном и качественном распределении элементов и соединений в нефтях (речь о них пойдет ниже). Хотя в нефтях установлено более 450 индивидуальных соединений, основными компонентами, составляющими 90-95% объема нефтей, являются углеводороды. Число углеродных атомов в углеводородах нефти колеблется от С1-С4 (газы) до Сбо (твердые вещества). В состав нефти входят перечисленные ниже углеводороды. [c.11]

    Знание компонентного, группового химического, элементного, фракционного состава нефти играет определяющую роль в выборе оптимальной технологии ее переработки. Однако следует учитывать и состав газов и газоконденсатов, так как добываемая нефть содержит растворенные газы — попутные газы. Наряду с нефтяными и газовыми месторождениями имеется и другое ценное углеводородное сырье — газоконденсаты, которые перерабатываются как отдельно, так и вместе с нефтью. [c.29]

    С помощью НАА также было изучено влияние автомобильных выхлопных газов на загрязнение окружающей среды [372]. Совместное использование НАА и РФА позволило определить элементный состав твердых взвешенных частиц, выбрасываемых теплоэлектростанциями, работающими на различных видах топлива [373]. Найдено, что при употреблении дизельного топлива в атмосферу попадает 90% ванадия и никеля, а при сжигании нефти — 3% хрома и 2% натрия. Отметим работы [374, 375], посвященные НАА каменного угля, летучей угольной золы, пыли очистных сооружений и некоторых дериватов человеческого организма (волосы), проведенные с целью выяснения источников загрязнения среды и поступления токсичных элементов в человеческий организм. [c.93]


    Углеводороды — наиболее простой по элементному составу класс органических соединений (состоят только из углерода и водорода). Они широко распространены на Земле входят в состав природного газа, нефти и некоторых твердых горючих ископаемых (горный воск). Предельные углеводороды являются продуктами многотоннажного промышленного органического синтеза они образуются при крекинге и при получении синтетического моторного топлива. Эти углеводороды широко используются как высококалорийное топливо ценное промышленное сырье для получения разнообразных химических продуктов. [c.23]

    Газ коксования содержит значительно меньше непредельных углеводородов, чем газ термического крекинга. Например, в газе термического крекинга содержится 20—26% олефинов Сг—С4, а в газе замедленного коксования 5—15%, поэтому он является менее ценным сырьем для дальнейшей переработки. Но если температуру в кипящем слое мазута, например, арланской нефти поднять с 520 до 625° С, то выход газа возрастет в 4 раза и содержание в нем олефинов — в 1,4 раза. Бензины коксования хотя и содержат меньше олефинов, чем бензины термического крекинга, но тоже нестабильны и при хранении быстро осмоляются. Их октановое число (по моторному методу) составляет 57—67. Дистилляты коксования могут служить сырьем для других процессов или после очистки и фракционирования использоваться соответственно как компоненты бензина и дизельного топлива. Нефтяной кокс представляет собой твердый пористый продукт черного цвета с металлическим блеском. Его элементный состав (в %) углерода 90—97, водорода 1,5—8%, остальное— сера, азот, кислород и различные металлы. [c.120]

    Современная азотная промышленность основана на синтезе аммиака из азота и водорода. Источником получения элементного азота является атмосферный воздух, состав которого практически постоянен, а запасы неисчерпаемы. Источником получения водорода служат газообразные углеводороды (природный газ, попутные газы нефтедобычи и др.) отходящие промышленные газы (коксовый газ, синтез-газ) твердое топливо (кокс, антрацит, уголь), жидкое топливо (мазут, нефть, керосин, бензин и другие жидкие углеводороды) вода, подвергаемая электролизу. [c.97]

    Извлечение хлористых солей из нефти водой и титрование в водной вытяжке Восстановление связанной органики и элементной серы на активном никеле Ренея до сульфата никеля, разложение сульфата никеля соляной кислотой и определение выделивщего-ся сероводорода титрованием раствором ацетата ртути в щелочной среде в присутствии индикатора Разделение углеводородов С1 Сб, входящих в состав нефти, методом газо-жидкостной хроматографии Сжигание нефтепродукта в лампе в чистом виде или после разбавления растворителем с последующим поглощением образовав-щихся оксидов серы раствором углекислого натрия и титрованием серной кислотой [c.573]

    Важнейшими показателями технологических свойств пеков, отображающих особенности их молекулярной и надаолекулярной организации, являются плотность, элементный состав, А ,ММР, коксуемость, вязкость, поверхностное натяжение, адгезия, термическая и термоокислительная стабильность (реактивность), растворимость и другие. Определенному набору значений этих показателей качества Ш1 соответствует бесконечно большое число объединений множеств органических соединений и способов их получения на основе нефти,природного асфальта, углеводородных газов и индивидуальных углеводородов. Множество способов получения НП могут быть отнесены к одной из следующих групп  [c.67]

    Более приемлемой оказалась классификация каустобиолитов, разработанная В.А. Клубовьш (1948), который исходил из положения, что все каустобиолиты имеют сходный элементный состав и что количественные изменения соотношений этих элементов, происходяшие в процессе образования и преобразования каустобиолитов, отразятся на соотношениях С Н и С (0+М+8). Построенная в прямоугольной системе координат диаграмма представляла генетическую классификацию каустобиолитов, в основу которой положены три генетических класса каустобиолитов, выделенные Г. Потонье (гумиты, сапропелиты и липтобиолиты). В.А. Клубов выделил четвертый самостоятельный класс нефтяных битумов, к которому отнес газы, нефти и все природные продукты ее преобразования. Сходство элементного состава антрацитов и антраксолитов, обусловленное общностью характера процессов карбонизации гумитов и нефтяных битумов асфальтового ряда, привело В.А. Клубова к необходимости выделения еще одного, пятого, класса каустобиолитов — карболитов. [c.11]

    Вы знаете, что твердые горючие ископаемые образовались преимущественно из растений в результате сложных и длительных превращений. Б табл. 9 приведен элементный состав твердых горючих ископаемых в ono-ставлении с составом основных компонентов растений (11еллюлоза, лигнин), а также с составом нефти и метана— основного компонента природных горючих газов. [c.191]


    Элементный состав большинства нефтей х арактеризуется содержанием в них 83—87% углерода, 11—14 водорода и 1—3% азота, кислорода, серы и металлов. В некоторых нефтях содержание серы достигает 6%. Определить химический состав нефти по отдельным соединениям очень сложно, поэтому часто ограничиваются определением группового химического состава, т. е. отдельных групп и рядов углеводородов. Для газов и легких бензиновых фракций удается определять индивидуальный химический состав. [c.5]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]


Смотреть страницы где упоминается термин Элементный состав нефтей и газов: [c.258]    [c.618]    [c.243]    [c.85]   
Смотреть главы в:

Теоретические основы технологии горючих ископаемых -> Элементный состав нефтей и газов




ПОИСК





Смотрите так же термины и статьи:

Нефть элементный состав

Состав газов

Элементный состав



© 2025 chem21.info Реклама на сайте