Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть элементный состав

    Нефть Элементный состав, 7о Отношение С/Н  [c.46]

    Нефть м рГ Элементный состав , % (масс,) с Н [c.205]

    ЭЛЕМЕНТНЫЙ СОСТАВ НЕФТИ [c.75]

    Нефть Содержание в нефти. % Элементный состав. % Н С (атомное) [c.275]

    Элементный состав и другие данные о нефтях Советского Союза приведены в табл. 10.1. [c.186]

    С позиций химии нефть — сложная исключительно многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углеводородов различного химического строения с числом углеродных атомов до 100 и более с примесью гетероорганических соединений серы, азота, кислорода и некоторых металлов. По химическому составу нефти различных месторождений весьма разнообразны. Поэтому обсуждение можно вести лишь о составе, молекулярном строении и свойствах "среднестатистической" нефти. Меиее всего колеблется элементный состав нефтей 82,5 — 87 % углерода 11,5—14,5 % водорода 0,05 —0,35, редко до 0,7 % кислорода до 1,8 % азота и до 5,3, редко до 10 % серы. Кроме названных, в нефтях обнаружены в незначительных количествах очень многие элементы, в т. I. металлы (Са, Мд, Ре, А1, 51, V, N1, Ыа и др.). [c.59]


    Нефть Содержание в нефти. % (масс.) Элементной состав. % (масс.) С Н (массовое) [c.211]

    Характеристика и элементный состав некоторых нефтей СССР [c.187]

    Элементный состав нативных асфальтенов некоторых нефтей [c.211]

    Такой элементный состав наблюдается у более легких нефтей. Отсюда следует, что низкокипящие фракции должны всегда иметь большую теплопроизводительность (в ккал), чем высококипящие, что и совпадает с опытными данными  [c.63]

    Для правильного выбора метода переработки нефти, для составления материальных балансов некоторых процессов необходимо знать элементный состав нефти. [c.57]

    Элементный состав нефти. [c.114]

    Обезвоживание нефти принято начинать с отстаивания нри комнатной температуре. Если в результате содержание воды ие снижается до требуемого (1% масс.), то нефть продолжают отстаивать при комнатной температуре, добавляя 10—20% хлористого кальция, хлористого натрия или другого осушителя. Добавлять деэмульгатор при последующем детальном физико-химическом исследовании не рекомендуется, так как это может отразиться на таких константах, как элементный состав, кислотность, зольность и т. д. Плохо разбиваемые эмульсии нефти рекомендуется обезвоживать в автоклаве, выдерживая при 150 °С в течение 1—2 ч под давлением 0,6 —1 МПа (6 —10 кгс/см ) .  [c.56]

    Определить поверхность радиантных труб двухкамерной печи с двухрядным экраном для нагрева 250 000 кг/ч нефти (di" =0,870) от 160 до 350 °С. Массовая доля отгона на выходе из печи е = 0,55. Плотность паров d o=0,807, жидкого остатка di" =0,967. Элементный состав топлива (в % масс.) 81,5 С и 18,5 Н. Принять при расчете коэффициент избытка воздуха а=1,2 потери тепла излучением 4% от теплоты сгорания топлива температуру газов, уходящих из печи, /ух = 350°С температуру на перевале / = = 850 °С температуру воздуха /в=20°С к. п. д. топки г1т=0,95 диаметр труб 152 мм полезную длину труб 17,5 м степень экранирования ф = 0,36 фактор формы /(=1,72. [c.108]

    Асфальтены, выделенные из тяжелых нефтяных остатков (вторичные), характеризуются меньшим содержанием водорода и значительно более высоким содержанием гетероатомов, чем асфальтены, выделенные из сырых нефтей (первичные). Как в первичных, так и вторичных асфальтенах наибольшие колебания наблюдаются в суммарном содержании гетероатомов и в количественном соотношении последних. На содержании гетероатомов наиболее сильно сказывается химическая природа исходной нефти, ее элементный состав. [c.50]


    Озонолиз нефтяных асфальтенов, выделенных из сибирских нефтей, проводился на лабораторной установке в растворе хлороформа при комнатной температуре в течение 6—8 час. Озонирующая смесь содержала примерно 10% озона [62]. В результате озонирования асфальтенов было получено два вида продуктов растворимая (30—40%) и нерастворимая в хлороформе части. Продукты озонолиза первичных асфальтенов были исследованы методами ИК-, ПМР-, ЭПР-спектроскопии и определен их элементный состав (табл. 39). [c.140]

    Битумы представляют собой слол<ную смесь высокомолекуляр-]1ых углеводородных соединений нефти и их кислород-, серо-, азот- и металлсодержащих производных. Элементный состав битумов колеблется в следующих пределах (в % масс.) углерода 80—85, водорода 2—8, кислорода 0,5—5, азота до 1, серы до 7%. Он зависит от природы нефти, состава исходного сырья — нефтяных остатков и от технологии его производства. Ниже приведена применяемая в СССР и распространенная в зарубежных странах методика определения группового химического состава битумов.  [c.279]

    Большинство нефтей представляют маслянистые жидкости от темно-коричневого до темно-бурого цвета, который зависит от содержания в них окрашенных смолистых веществ. Плотность нефтей составляет 0,82—0,90 т/м , температура затвердевания лежит в пределах от -20°С до +20°С. Вязкость нефтей значительно выше вязкости воды. Элементный состав нефтей колеблется в очень незначительных пределах углерод 84— [c.114]

    При разделении гетероатомных соединений к асфальтенам относят вещества, не растворимые в алканах. Асфальтены представляют собой твердые вещества, переходящие при 200-300 С в вязкое пластическое состояние при более высоких температурах они разлагаются. Молекулярная масса их превышает 2000 и зависит от метода определения. Асфальтены являются наиболее высокомолекулярными веществами нефти. Содержание асфальтенов и их элементный состав для некоторых отечественных нефтей приведен в табл. 1.1. [c.14]

    Содержание и элементный состав нативных асфальтенов нефтей /5 / [c.15]

    Химический или элементный состав топливных фракций обусловлен составом нефтяного сырья, из которого они были получены. Современные методы элементного анализа нефтей и топлив достаточно совершенны. Нефти и топливные фракции содержат следующие химические элементы (% мае..) 83-87 С, 11-14 Н, до 2-3 8, N. О, V, N1, Ре и в незначительных концентрациях большое количество др. элементов. Между элементным составом и эксплуатационными свойствами нет прямой связи. [c.20]

    Содержание Н. с. в нефтях колеблется от 1 до 20% по массе. Элементный состав (%) С (78-88), Н (8-10), S (1-10), [c.238]

    Элементный состав нефти представлен, в основном, углеродом (82-87%), водородом (11-14%), серой (0,1-7%), азотом (0,001-1,8%) и кислородом (0,5—1%). [c.341]

    С позиций химии нефть - сложная исключительно многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углеводородов различного химического строения с числом углеродных атомов до 100 и более с примесью гетероорганических соединений серы, азота, кислорода и некоторых металлов. По химическому составу нефти различных месторождений весьма разнообразны. Поэтому обсуждение можно вести лишь о составе, молекулярном строении и свойствах среднестатистической нефти. Менее всего колеблется элементный состав нефтей 82,5-87% углерода  [c.70]

    Ниже в табл.3.3 приводим элементный состав нативных смол и асфальтенов, выделенных из нефтей известных месторождений России. [c.90]

    Элементный состав нативных смол и асфальтенов некоторых нефтей России, % масс. [c.90]

    Молекулярный вес (по данным А. П. Саханова) нейтральных смол — ниже 1000, составляя для слабопарафинистой грозненской нефти около 500, для беспарафинистой — 630, для Вознесенской нефти — около 750 и, наконец, около 870 для грозненского масляного гудрона. Элементный состав нефтяных (нейтральных) смол следующий  [c.100]

    Повышение точности измерения массовых чисел при МС высокого разрешения чрезвычайно расширяет возможности анализа. Точные значения масс отдельных изотопов не целочисленны (1Н = 1,00782, = 15,99491, = 14,00307, = 31,97207), за исключением атомов С, масса которых принята за опорную в современной системе выражения атомных масс ( С = 12,0000), поэтому, определяя массу иона с точностью до 10 — 10 а. е. м., можно находить одновременно и его элементный состав. Очевидно, что таким способом можно различить и раздельно определить многие из соединений (I—I) — (I—VIII), точные молекулярные массы которых часто разнятся уже в первом или во втором знаке после запятой (исключая соединения I—II, I—III и I—IV). Основным вариантом анализа при высоком разрешении стала низковольтная МС, хотя применение фрагментной МС и в этом случае, безусловно, может способствовать углублению изучения состава (например, позволяет различить углеводороды I—II — I—V). Яркий пример, иллюстрируюш ий огромные возможности низковольтной МС высокого разрешения в исследовании состава нефти, можно найти в работе Э. Гальегоса и др. [312] (рис. 1.5). [c.39]


    Содержание А. в нефтях колеблется от 1 до 20%. Элементный состав (%) С (80-86), Н (7-9Х О (2-10), S (0,5-9), N (до 2) в микрокол-вах присутствуют V и Ni (суммарное содержание 0,01 Fe, Са, Mg, Си и др. металлы, вхо- [c.211]

    Из табл. 6 видно, что при отмывке от глобулы воды петролейным эфиром из ромашкинской и арланской нефтей выделено в 5,5-5,3 раза больше эмульгатора, чем после экстракции керосином. Такое большое увеличение количества эмульгаторов, выделенных при применении пет-ролейного эфира, объясняется осаждением из нефти асфальтенов. Эмульгатор же, выделенный предварительной отмывкой нефти керосином, -это вещество, из которого образованы пленки вокруг глобул воды в эмульсии. Содержание в Эмульгаторах веществ, растворимых в бензоле, в два-три раза больше, чем нерастворимых. Не растворимая в бензоле часть эмульгатора состоит из смеси органических веществ (карбены, карбоиды и др.) и неорганических (глина, песок и др.). Физико-химическая характеристика и элементный состав веществ — эмульгаторов приведены в табл. 7 и 8. [c.27]

    Элементный состав асфальтенов некэторых нефтей приведен в табл. 10.10. [c.211]

    В результате работ по исследованию нефте , проведенных в различных странах за последние 40 лет, разработана общая методика исследования состава нефти. Вначале нефть обезвоживают и обессоливают, определяют ее основные константы плотность, показатель лучепреломления, молекулярную массу, вязкость, элементный состав. Затем проводят перегонку нефти для получс-ния бензиновой, керосиновой, газойлевой и масляных фракций и остатка. Перегонка проводится вначале при атмосферном давлении до 200°, а затем — в вакууме для того, чтобы избел ать возможных химических превращений углеводородов нефти под действием тепла. Остаток анализируется отдельно. [c.10]

    Гетероатоиные соединения нефти. К гетероатомным компонентам нефти относятся сернистые, кислородсодержащие, азотсодержащие и высокомолекулярные (асфальто-смолистые) соединения, содержание которых колеблется от 5 до 20% масс. До 70-90% гетероатомных компонентов сернистых в виде меркаптанов (тпо-лов), сульфидов, тиофенов и тиофанов, а также полициклических концентрируется в остаточных продуктах — мазуте и гудроне азотсодержащие в виде гомологов пиридина, хинолина, индола, карбазола, пиррола, а также порфирины концентрируются в тяжелых фракциях и остатках кислородсодержащие нафтеновые кислоты, фенолы, смолисто-асфальтеновые вещества сосредоточены обычно в высококипящих фракциях. Элементный состав (%) С 82-87 Н 11-14,5 3 0,01-8 N 0,001-1,8 О 0,005-1,2. С ростом температуры кипения нефтяных фракций и средней температуры кипения нефтей количество гетероатомных соединений увеличивается. Кратко рассмотрим основные группы гетероатомных веществ. [c.43]

    Детализированный групповой состав кроме содержаиия углеводородов различных групп показывает содержание различных углеводородов, входящих в состав каждоГ группы. Структурно-груи-повой состав высших масляных фракций нефти дает представление о соотношении различных структурных групп (ароматнчески.х ядер нафтеновых ядер, парафиновых цепей) в так называемо1 г средней молекуле данной масляной фракции, т. е. такой гипотетической молекуле, элементный состав которой и молекулярная масса одинаковы с элементным составом и М фракции. [c.86]

    Объектами исследования служили остаточные нефтепродукты, значительно отличающиеся друг от друга содержанием парамагнитной фазы смеси дистиллятного крекинг-остатка арланской нефти (ДКО) с гудроном котуртепинской нефти (ГКН) и смеси асфальта пропановой деасфальтизации гудрона западно-сибирской нефти пропаном (АД) с экстрактом процесса селективной очистки масел арланской нефти (ЭСО) (фупповой и элементный состав представлен в табл. 1). Взятые в различных соотношениях, образцы позволяют получить смеси, которые отличаются соотношением диамагнитной и парамагнит-ной фаз. [c.128]

    Нефтяные системы состоят из низко- и высокомолекулярных углеводородных и неуглеводородных соединений. Углеводородными компонентами нефтяных систем являются в основном представители трех классов соединений алканов, циклоалканов и аренов, а также значительное количество углеводородов смешанного гибридного строения. Алкены н алкадиены в природных нефтяных системах обычно не встречаются, однако могут содержаться в продуктах переработки нефти. Неуглеводородные соединения нефти представлены главным образом смолами и асфальтенами. Элементный состав нефтяных систем колеблется в широких пределах. Так, для природных нефтей массовое содержание основных элементов углерода С, водорода Н и гетероатомов серы 5, азота N и кислорода О составляет С—83— 87, Н—12—14, 5— 0,001—8, N — 0,02—1,7, 0—0,05—3,6%. В значительно меньших количествах в нефтях присутствуют и многие другие элементы. В табл. 4 помеш.ены встречающиеся в нефтях углеводороды и гетеросоединения. [c.21]

    Сама жизнь подсказывает необходимость комплексного использования замечательного дара природы — нефти, и научные разработки в данном направлении возобновились. В Институте ядерной физик АН Казахской ССР и Институте химии нефти Томского филиала СО АН СССР интенсивно изучают элементный состав нефтей и их фракций с помощью нейтронноактивационного анализа. Благодаря созданию установок экспрессного определения содержания в нефтепродуктах и сырье ванадия, серы и других неорганических примесей, появилась возможность четко определять, какие именно нефти стоит отправлять на извлечение металлов. [c.132]

    В ходе многочисленных исследований было установлено, что каждому физико-химическому свойству соответствует несколько длин волн, на которых выполняются соотношения (4.2) - (4.4). Установлено, что каждому свойству соответствует длина волны, при котором эти соотношения выполняются с максимальной точностью. Такие длины волн называются аналитическими. В таблице 4.2 приведены аналитические длины волн для различных свойств и, соответствующие им, коэффициенты корреляции. Относительная ошибка определения свойств по уравнениям (4.4) - (4.5) не превышает 4%, а коэффициент корреляции - 0,85-0,99. Как видно из данных таблицы 4.2, принцип квазилинейной связи (ПКС) выполним даже в таких сложных веществах, как нефть, нефтепродукты, топлива, углеродистые вещества, полимерные смеси, асфаль-то-смолистые высокомолекулярные вещества и др. На основе ПКС предложены экспрессные методы, позволяющие определять по легкоопределяемой характеристике - коэффициенту поглощения, практически все трудноопредеяе-мые свойства молекулярных веществ и многокомпонентных смесей, например, молекулярную массу, вязкость, элементный состав, показатели термостойкости, температуру хрупкости, концентрацию парамагнитных центров, энергию активации вязкого течения, энергию когезии, температуру вспышки, вязкость, показатели реакционной способности и т.д. [14-30]. По сравнению с общепринятыми методами, время определения свойств сокращается от нескольких часов до 20-25 минут. Как свидетельствуют данные [14], для рассматриваемых свойств на аналитических длинах волн выполняется условие соответствия определения по общепринятым методам и расчетам по оптимальным параболическим и кубическим зависимостям. [c.90]

    АСФАЛЬТ (греч. asphaltos-горная смола). Различают естеств. (прир.) и искусста А. Первый образуется в результате окисления тяжелых нефтей нлн нх остатков после испарения легких фракций. Встречается в виде пластовых жильных залежей, а также пропитанных проницаемых пластов (т. наз. закирований) и озер в зонах естеста выходов нефти на земную пов-сть (содержание в породах от 2-3 до 20%). Твердая легкоплавкая масса черного цвета с блестящим или тусклым раковистым изломом. Плотн. 1,1 г/ м т.пл. 20-100°С. Содержит 25-40% масел и 60-75% смоли-сто-асфальтеновых в-в. Элементный состав (%) 80-85 С, 10-12 Н, 0,1-10 S, 2-3 0. Месторождения А. имеются в СССР, Венесуэле, Канаде, Франции, на о. Тринидад и др. Искусств. А.-смесь битумов нефтяных (13-60%) с тонкоиз-мельченными минеральными наполнителями, гл. обр. известняками. Применяют А. обычно в смеси с песком, гравием, щебнем для устройства дорог, тротуаров, полов пром. зданий, как кровельный, гидро- и электроизоляц. материал, а также для приготовления замазок, клеев, лаков и др. [c.211]

    Обзор предложений по квалификационным признакам дает следующий материал. Более 50 лет самы.м распространенным критерием принадлежности к асфальтенам являлась нерастворимость в низкокнпящих алканах. Сейчас это понятие Спейт детализировал как нерастворимость в растворителях, имеющих поверхностное натяжение 25 10 Н/м и растворимость в растворителях, имеющих поверхностное натяжение выше 25 10 Н/м, например, в пиридине, сероуглероде, четыреххлористом углероде и бензоле. Однако при этом всегда подчеркивается условность такого критерия. В своих экспериментальных работах Дж. Спейт продолжает называть асфальтенами вещества, осаждающиеся из нефтей и битумов при добавлении 40 объемов н-пен-тана. Несмотря на месторождение, элементный состав асфальтенов, осажденных н-пентаном, различается мало. [c.56]

    Элементный состав нефтей. Его знание важно для правильного выбора метода переработки нефти, для составления материальных балансов некоторых процессов. Так, наличие в нефти сернистых и кослородсодержащих соединений требует сооружения специальных установок для очистки от этих соединений. [c.16]


Смотреть страницы где упоминается термин Нефть элементный состав: [c.129]    [c.76]    [c.4]    [c.258]    [c.262]    [c.618]   
Химия и технология нефти и газа Издание 3 (1985) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Химический элементный и углеводородный состав нефтей

Элементный и групповой состав нефтей и нефтепродуктов

Элементный и фракционный состав нефти

Элементный состав

Элементный состав нефтей и газов

Элементный состав сырья для деструктивных процессов прорвинской нефти (смеси)

Элементный, изотопный, групповой состав нефтей



© 2024 chem21.info Реклама на сайте