Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные оптические

    Оптические свойства коллоидных систем. Давно было замечено, что путь светового луча, проходящего через совершенно прозрачный коллоидный раствор золота, становится видимым, если рассматривать его сбоку на темном фоне. Это явление получило название эффекта Тиндаля (рис. 186) оно вызывается рассеянием света коллоидными частицами. Подобное явление, вероятно, знакомо каждому, кто наблюдал за световым лучом, проходящим тонким пучком в темном помещении (например, в кинотеатре), или за лучом прожектора иа темном фоне ночного неба. Луч виден со стороны только в тех случаях, когда на пути его имеются в большом числе мелкие частицы пыли или тумана, рассеивающие свет. [c.535]


    Оптические свойства коллоидных систем [c.535]

    На основании вышеизложенного можно заключить, что некоторые эксплуатационные свойства товарных масел зависят во многом от формирования в системе коллоидных структур, являющихся результатом межмолекулярных взаимодействий присадок. Учет этих межмолекулярных взаимодействий и их направленное регулирование позволяет избежать формирования и осаждения из растворов масел с присадками коллоидных образований и обеспечить наивысшую коллоидную стабильность масляных композиций. Эффективным методом оценки склонности к расслоению растворов масел с присадками является метод седиментации, к достоинству которого можно отнести возможность определения коллоидной стабильности масел в реальных условиях их применения. Методы седиментационной устойчивости и лазерной оптической спектроскопии в совокупности позволяют оценить совместимость присадок, а также контролировать процесс старения масел в процессе их хранения и эксплуатации. В конечном итоге такая оценка межмолекулярных взаимодействий в системе базовое масло-композиции присадок позволит предсказывать характер изменения эффективности присадок (синергизм, либо антагонизм), а также оптимизировать рецептуру и технологию производства масел. [c.277]

    Принцип работы описываемой установки состоит в следующем. Оптическое изображение объекта исследования преобразуется в телекамере в видеосигнал, который далее в анализаторе изображения трансформируется в вариационный ряд стереометрических параметров. Микропроцессор производит статистическую обработку последних, определяет размеры неоднородностей - в данном случае коллоидных частиц, строит гистограмму их распределения по размерам, определяет характер этого распределения и его параметры. [c.34]

    Совместимость смесей оценивалась нами по методике ЦНИИ МФ [54], исходные данные для этого - размеры и количество коллоидных частиц в единице объема были получены на оптической автоматизированной системе. [c.108]

    Как было показано ранее, вопросы агрегативной и кинетической устойчивости коллоидных систем изучаются на протяжении многих лет. В последние десятилетия интенсивно развиваются исследования устойчивости, однако методические разработки в этом направлении весьма ограниченны. Основное внимание уделяется методам, позволяющим косвенно определять устойчивость нефтяных дисперсных систем при обычных или повышенных температурах. В условиях комнатных температур определяют кажущуюся устойчивость в среде растворителя. Сущность одного из методов заключается в установлении седиментационным методом способности к расслоению разбавленных нефтяных дисперсных систем [31, 148]. Критерием оценки в этом случае является фактор устойчивости, представляющий собой отношение концентраций дисперсной фазы, устанавливаемое за фиксированное время центрифугирования исследуемого раствора в двух слоях, отстоящих на определенном расстоянии друг от друга в направлении сил осаждения. Чаще всего с помощью фотоэлектроколориметра определяют концентрацию асфальтенов в верхнем и нижнем слоях раствора исследуемого нефтепродукта. При этом для каждого из исследуемых нефтепродуктов необходимо построение калибровочных графиков в координатах оптическая плотность — концентрация асфальтенов в используемом растворителе, что усложняет и делает более длительным исследование по этому методу. Предложено определять склонность компонентов нефтяной дисперсной системы к ассоциации и осаждению при помощи соотношения [c.270]


    Получение коллоидных растворов. Оптические свойства дисперсных систем. [c.218]

    Учение о коллоидах было выделено как самостоятельное направление научных исследований немногим более ста лет назад и развивалось на стыке физики и химии. По сути, предметом рассмотрения были дисперсные системы с определенными пределами размеров дисперсной фазы. Направлениями исследований коллоидных систем явились диффузия, сорбция, вязкость, электропроводность, оптические и поверхностные свойства, устойчивость против расслоения и многие другие. Важным разделом коллоидной химии считается коллоидная механика, преобразованная в физико-химическую механику дисперсных систем, изучающая структурообразование в дисперсных системах и их структурно-механические свойства. [c.13]

    Коллоидные частицы, то есть частицы дисперсной фазы в коллоидной системе, еще не видны в обычный оптический микроскоп, несмотря на их более крупные размеры по сравнению с молекулами в истинных растворах. [c.21]

    В основе многих классических методов исследования дисперсных систем, в частности изучения размеров коллоидных частиц растворов технических продуктов, используемых в производстве пластических смазок, в лакокрасочной промышленности и других случаях применения, лежит измерение светорассеяния. Однако исследование указанным методом нефтяных дисперсных систем часто осложнено либо вовсе невозможно вследствие значительного поглощения света и больших величин оптической плотности исследуемых систем. В подобных случаях оптические исследования осуществляются при разбавлении систем, пренебрегая вторичным рассеянием света. [c.83]

    Определение коллоидной стабильности индустриальных масел с композициями присадок седиментационным методом в настоящей работе заключалось в следующем. Центрифугирование проводили при повышенных температурах, после чего фактор устойчивости системы, характеризующий однородность раствора по высоте слоя, определяли отношением оптических плотностей верхней и нижней его половин  [c.271]

    Одним из важнейших и наиболее ярко выраженных оптических свойств коллоидов является их способность сильно рассеивать свет. Эффект опалесценции в коллоидных системах назван по имени Тиндаля, который подробно исследовал это явление (1869 г.). [c.17]

    Все сказанное в отношении ориентационных оптических методов исследования коллоидных систем свидетельствует об их исключительной важности и перспективности. [c.31]

    Назначение. Технические данные. Колориметры фотоэлектрические типа КФК, ФЭК-56М, ФЭК-56 предназначены для измерения пропускания или оптической плотности растворов в диапазоне 315—630 нм и определения концентрации веществ в растворе фотометрическими методами. Приборы позволяют также производить относительные измерения интенсивности рассеяния взвесей, эмульсий и коллоидных растворов в проходящем свете. Приборы ФЭК-56М, ФЭК-56 могут комплектоваться дополнительным титровальным приспособлением ТПР, которое позволяет проводить фотометрическое титрование. [c.204]

    Для наблюдения коллоидных частиц обычные микроскопы непригодны, поэтому, в 1903 г. австрийский химик Р. Зигмонди (1865—1929) совместно с немецким физиком Г. Ф. В. Зидентопфом (1872—1940) создали специальный метод исследования, названный ультрамикроскопией. Этот метод основан на использовании оптических свойств коллоидных растворов и отличается от обычного боковым освещением наблюдаемого объекта. При этом кол-276 [c.276]

    На рнс. 93 показаны пределы применимости оптических методов исследовапия дисперсных систем. Коллоидные частицы проходят через бума киые фильтры, но задерживаются ультрафильтр а м 11 (мембранными фильтрами), представляюихими собой гели полимеров в виде пленок. Зиая радиус пор ультрафильтров, можно оисинть размер коллоидных частиц. [c.317]

    Солюбилизирующую способность ПАВ часто оценивают с помощью олеофильных красителей (например, судан П1, оранжевый ОТ). Такле красители, практически нерастворимые в воде, растворяются в гидрофобной части мицелл, окрашивая раствор. Интенсивность окраски раствора тем выше, чем больше количество коллоидно-растворенного красителя. Содержание солюбилизированного красителя определяют, измеряя оптическую плотность раствора. По оптической плотности с помощью калибровочного графика определяют количество солюбилизированного красителя в единице объема раствора 5. Мольную солюби н-зирующую способность данного раствора П.АВ рассчитывают как отнсниение полученного значения 5 к концентрации ПАВ  [c.136]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]


    Оптические свойства. Частицы дисперсной фазы коллоидной системы рассеивают падающий на них свет. Причиной рассеяния света является оптическая неоднородность коллоидных систем, т. е. разные оптические свойства дисперсной фазы и дисперсионной срсды. Пз этих сво11ств прежде всего следует указать показатель преломления, значение которого для дисперсной фазы и дисперсионной срсды различны. Вследствие этого луч света, проходя через дисперснониуга среду и попадая на частицу дисперсной фазы, обязательно изменяет свое направление, причем тем резче, чем больше показатель преломления дисперсной фазы отличается от показа-те. 1я преломления дисперсионной среды. Рассеяние света коллоид-И1.1МИ системами может быть различным в зависимости от соотно- [c.196]

    В дистиллятном масле МВП, выдержанном при температуре 80 °С в течение 70 ч, увеличивается число светопоглошающих (желтых, бурых, черных) частиц, что, вероятно, связано с тепловыми процессами, вызывающими химические и коллоидно-химические превращения в маслах. Добавка к маслу октана приводит к появлению значительного числа микрообъектов, т. с., по-видимому, происходит агрегирование частиц, до этого неразличимых оптическим методом. [c.34]

    Некоторые исследователи уже давно допускали, что каменные угли имеют коллоидный характер. Ряд углехимиков придерживается этого мнения и в настоящее время. В качестве доказательств правильности этих взглядов они приводят высокую адсорбционную способность углей по отношению к некоторым жидкостям и парам, их способность набухать и образовывать коллоидные растворы (например, в пиридине), а также некоторые их физические и оптические свойства. Представление об углях как коллоидных системах приводит к признанию их мицеллярной структуры. [c.212]

    Специфика оптических свойств объектов коллоидной химии определяется их осповнымп признаками гетерогениостыо и дисперсностью. Гетерогенность, или наличие межфазной поверхности, обусловливает изменение наиравления (отрал<ение, преломление) световых, электронных, нонных и других лучей на границе раздела фаз и неодинаковое поглощение (пропускание) этих лучей сопряженными фазами. Дисперсные системы обладают фазовой и соответственно оптической неоднородностью. Лучи, направленные на микрогетерогенные и грубодисперснЕ е системы, падают на поверхность частиц, отражаются и преломляются под разными углами, что обусловливает выход лучей из системы в разных направлениях. Прямому прохождению лучей через дисперсную систему препятствуют также их многократные отражения и преломления прн переходах от частицы к частице. Очевидно, что даже при отсутствии поглощения интенсивность лучей, выходящих, из дисперсной системы, будет меньше первоначальной. Уменьшение интенсивности лучей в направлении их падения тем больше, чем больше неоднородность и объем системы, выше дисперсность и концентрация дисперсной фазы. Увеличение дисперсности приводит м дифракционному рассеянию лучей (опалесценции). [c.245]

    Большинство указанных явлений подробно рассматривается в курсе физики. В курсе коллоидной химии более детально излагаются некоторые специфические явления, такие, как рассеяние лучей, двойное лучепреломление и др. В то же время все перечис ленные оптические свойства объектов коллоггдной химии широко используются для их исследования оптическими методами. [c.245]

    Как уже указывалось, граница разделения дисперных систем на коллоидные или микрогетерогенные достаточно условна. Микрогетерогенные системы характеризуются более крупными частицами дисперсной фазы, по сравнению с коллоидными, которые составляют не менее 1 мкм и видны в обычный оптический микроскоп. [c.25]

    Оптические методы принадлежат к самым распространенным методам исследования состава и структуры веществ и материалов. В коллоидной. химии исследуют состав и структуру не только (нлн пе столько) отдельных фаз, но и в первую очередь межфазных поверхностных слоев и структуры дисперсных систем определяю дисперсность системы (площадь поверхности), форму н строа ние элементов структуры (отдельных частиц), пористость, про< филь поверхности, толщину слоев, их состав и природу сил [c.245]

    В курсе коллоидной химии принято рассматривать только те оптические методы, которые используются в дисперсионном анализе (анализе дисперсности) для определения размера и формы частиц, удельной поверхностп, концентрации дисперсной фазы. К зтнм методам относятся световая и электронная микроскопия, методы, основанные на рассеянии лучей, двойном лучепреломлении и др. [c.247]

    Из оптических методов исследования в коллоидной химии применяются те методы, с помощью которых можно проводить дисперсионный анализ, т. е. определять размер и форму частиц, удельную поверхность, концентрацию дисперсной фазы. К таким методам относятся световая и электронная м-икроскопия, методы, основанные на рассеянии лучей, двойном лучепреломлении и др. [c.111]

    Особое место занимают исследования коллоидной структуры нефтяных дисперсных систем методом рассеяния рентгеновских лучей под малыми углами [67 — 70]. Указанный метод проявляет чувствительность к полидисперсности и форме частиц исследуемых объектов, не зависит от их оптической плотности и многокомпонетнос-ти. Однако этим методом можно фиксировать только размеры ядра структурного образования, не включая сорбционно-сольватный слой, что связано с незначительным расхождением в значениях электронных плотностей сольватной оболочки и дисперсионной среды. Кроме этого, метод малоуглового рассеяния позволяет получать достаточно воспроизводимые результаты в случае слабоструктурированных систем, когда расстояние между соседними структурными образованиями намного превышает их размеры. С помощью рассматриваемого метода изучено [71] распределение по размерам структурных образований в нефтяных профилактических средствах. Показано, что в этих системах размеры частиц дисперсной фазы составляют от 1,7-3 нм до 40 нм, причем основу коллоидной структуры составляют частицы меньших размеров. [c.84]

    В книге четко и лаконично излагаются методы получения и очистки лиофобных коллоидов. Глава 2, посвященная оптическим свойствам коллоидных систем, служит хорошим примером решения трудной задачи — доступного для химиков изложения этой весьма математизированной области. [c.5]


Смотреть страницы где упоминается термин Коллоидные оптические: [c.305]    [c.57]    [c.198]    [c.377]    [c.10]    [c.17]    [c.37]   
Физическая и коллоидная химия (1988) -- [ c.186 , c.188 ]

Курс коллоидной химии (1976) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидная химия Оптические свойства коллоидных систем

Коллоидные оптические свойства

Коллоидные системы методы исследования, оптические

Коллоидные системы оптические методь исследовани

Коллоидные системы оптические свойства

Молекулярно-кинетические и оптические свойства коллоидов Молекулярно-кинетические свойства коллоидных систем

ОПТИЧЕСКИЕ СВОЙСТВА И МЕТОДЫ ИССЛЕДОВАНИЯ КОЛЛОИДНЫХ РАСТВОРОВ

Оптические и кинетические свойства коллоидных систем

Оптические и кинетические свойства коллоидных систем Золи гидрофобных коллоидов

Оптические и кинетические свойства коллоидных систем Оптические свойства коллоидных систем Рассеяние света в дисперсных системах

Оптические и молекулярно-кинетические свойства коллоидных растворов

Оптические и электронные свойства коллоидных кластеров

Оптические методы исследования коллоидных растворов

Оптические свойства коллоидных растворов

Оптические свойства коллоидных систем Рассеяние света коллоидными частицами

Оптические свойства коллоидных систем Светорассеяние

Оптические, кинетические и электрические свойства коллоидных систем Оптические свойства коллоидных систем Светорассеяние в дисперсных системах

Получение коллоидных систем. Оптические и молекулярно-кинетические свойства

Форма частиц и оптические свойства коллоидных систем

Электрические и оптические свойства коллоидных систем Дисперсионный анализ



© 2025 chem21.info Реклама на сайте