Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интенсивность рассеяния

    Композиционная неоднородность, помимо применения различных способов фракционирования в системах, чувствительных к изменению состава [16], может быть исследована с помощью ряда физических методов. Так, для сополимеров, компоненты которых различаются по своим физическим характеристикам (показателю преломления, плотности, спектрам поглощения) были предложены следующие методы измерения интенсивности рассеянного света в растворителях с различным показателем преломления [3] скоростной седиментации с одновременной регистрацией в ультрафиолетовой и видимой областях спектра [31] плотности [27]. [c.29]


    Интенсивность рассеяния рентгеновского излучения в веи естве зависит от угла, под которым это рассеяние наблюдается (по отношению к направлению падающего луча). Эта зависимость в случае газов выражается непрерывной кривой без минимумов и максимумов и может быть теоретически объяснена на основании представления о независимости движения отдельных молекул газа. Твердые кристаллы рассеивают рентгеновские лучи только в определенных направлениях, что является следствием фиксированного расположения атомов в узлах кристаллической решетки и дает возможность полного анализа молекулярной структуры кристалла. [c.161]

Рис. V, 1. Интенсивность рассеяния рентгеновских лучей жидким аргоном при разных температурах и давлениях Рис. V, 1. <a href="/info/1054801">Интенсивность рассеяния рентгеновских лучей</a> <a href="/info/157978">жидким аргоном</a> при <a href="/info/50238">разных температурах</a> и давлениях
    В другом методе может быть использован счетчик, чувствительный к рентгеновскому излучению. Этот прибор сконструирован так, как показано на рис. 17.19. Счетчик движется по дуге, регистрируя изменения в интенсивности рассеянных рентгеновских лучей. Этот метод проще и быстрее, а также характеризуется значительно лучшим разрешением, чем можно достичь с помощью пленки поэтому в дальнейшем мы будем обсуждать использование дифрактометра, предназначенного для исследования порошкообразных образцов. [c.386]

    Интенсивность рассеяния облака газа вообще тем выше, чем больше значение вертикального градиента. [c.117]

    Но, пожалуй, самым замечательным критическим явлением будет так называемая критическая опалесценция, которая для однокомпонентных систем была открыта Авенариусом (1874) уже через несколько лет после открытия критической точки. Если газ охлаждать при критической плотности, то он при температуре примерно на один градус выше критической начинает излучать голубоватый свет опалесценции, интенсивность которого сильно увеличивается с приближением к критической точке, хотя система все еще остается гомогенной. Это явление основано на том, что при приближении к критической точке сильно возрастает прежде всего в прямом направлении интенсивность рассеяния света. Такие же явления наблюдаются в критической точке расслоения жидких и твердых систем. В последнем случае для доказательства нужно, конечно, использовать рентгеновские лучи. Критическая опалесценция является, как показывает теоретический анализ, непосредственным следствием того факта, что критическая точка расположена на границе области стабильности, [c.238]


    Если необходимо определить только размер частиц и их концентрацию, то достаточно измерить интенсивность рассеянного [c.89]

    Альтернативой белому свету может быть источник монохроматического света, и отраженный свет может измеряться фотоэлектрическими средствами. Тогда размер частиц можно рассчитать из выходного сигнала [683]. В данном случае проблема заключается в том, что, если аэрозоль состоит из частиц с различными показателями рефракции, необходимо сравнить интенсивность рассеянного света, поляризованного в двух плоскостях [559—561]. На практике [c.98]

    Экспериментально определяется не амплитуда рассеянной волны, а поток энергии или частиц, пропорциональный ее квадрату. В рентгеноструктурном анализе вводится специальная функция 1(з), называемая интенсивностью рассеяния или дифференциальным сечением рассеяния (для дифракции нейтронов). Размерность этой функции — квадрат длины. Обычно решается обратная задача по восстановлению распределения рассеивающей плотности по измеренной экспериментально функции 1(з). Величина 5 = связывает угол рассеяния 6 с [c.101]

    Если падающий свет не поляризован, то интенсивность рассеянного света в направлении, составляющем угол 0 с направлением распространения излучения, пропорциональна величине (I -)г-+ со 0). В плоскости этого направления интенсивность рассеяния света во все стороны одинакова. Зависимость интенсивности рассеянного света от угла рассеяния для естественного света представлена на рнс. V. 2а в виде векторных диаграмм, предложенных ученым Мн. Рассеянный свет является частично поляризованным. Внутренняя незаштрихованная часть диаграммы Ми представляет собой не поляризованную часть рассеянного света, заштрихованная [c.255]

    Закономерность (V. 9) перестает выполняться, если размеры частнц дисперсной фазы приближаются к длине волны падающего света. С увеличением размера частиц зависимость интенсивности рассеянного света от длины волны становится менее резкой, например, если размеры частиц несколько больше длины вол-ны, интенсивность рассеянного света обратно пропорциональна квадрату длины волны. Это объясняет тот факт, что при падающем естественном свете рассеянный свет от дисперсных систем с мелкими частицами имеет голубой оттенок, а от систем с крупными частицами — белый. [c.256]

    Закон обратной пропорциональной зависимости интенсивности рассеянного света от четвертой степенн длины волны не выполняется для дисперсных систем с частицами, поглощающими свет. Селективно поглощают свет, например, металлические частицы, что обусловливает, кроме того, сложную зависимость цвета прошедшего света от размеров частиц. [c.256]

    С ростом размера частиц изменяются и закономерности поляризации света (рис. У.2б). Степень поляризации света, рассеянного крупными частицами, зависит от их размеров и формы. Интенсивность рассеяния света перестает быть симметричной по направлениям лучей. Для крупных сферических частиц она больше в на- [c.256]

    Если дисперсная система содержит частицы, размер которых больше, чем О,IX, то помимо увеличения интенсивности рассеяния в направлении падающего света н уменьшения ее — в обратном направлении проявляются отклонения от закона Рэлея. Эти отклонения относятся к зависимости рассеяния света от длины волны и к поляризационным явлениям. Они могут быть использованы для суждения о размерах частиц. С увеличением размеров частиц [c.261]

    Точность турбидиметрического метода небольшая, поскольку интенсивность рассеяния (относительно малая величина) опреде- [c.262]

    Еслп принять во внимание относительно малую интенсивность рассеянного света, и учесть, что в этом случае мутность золя может быть выражена отношением интенсивностей рассеянного и падающего света (V. 17), т. е. [c.263]

    С помощью нефелометра сравнивают светорассеяние стандартного и исследуемого гидрозолей мастики равных концентраций. Интенсивности рассеянных световых потоков одинаковы при высоте освещенной части исследуемого золя А =5 мм и высоте стандартного золя /12 ====21 м.м. Средний радиус частиц стандартного золя 120 нм. Рас счи-тайте радиус частиц исследуемого золя. [c.128]

    На рис. 11.2.2 приведен типичный спектр рассеянного излучения в смеси нитробензол - гептан с концентрацией, близкой к критической. Практическое отсутствие выбросов на огибающей спектра свидетельствует о постоянстве оптимальных условий фотосмешения за время измерения. Одновременно с измерением коэффициента диффузии проводилось изучение суммарной интенсивности рассеянного света 7, которая определяет термодинамическую величину 3 [c.29]

    Рассеяние света. Рэлей (1871, 1897, 1899) вычислял интенсивность рассеяния света сферическими непроводящими частицами, [c.150]

    Для того чтобы получить данные о группировке содержимого в элементарной ячейке, необходимо измерять интенсивности рассеянных пучков рентгеновского излучения. И в методе с пленкой, и в методе со счетчиком кристалл движется во время измерений так, что точки о.р. пересекают сферу отражения с одной стороны до другой. Поскольку точки о. р. растягиваются по сфере отражения, интегральная интенсивность зависит частично от угла между направлением движения и поверхностью сферы при пересечении. Время, необходимое для пересечения точкой о.р. сферы, увеличивается по мере того, как угол приближается к нулю. Необходимо также объяснить различие в отражаемости рентгеновских лучей, электрический вектор которых перпендикулярен и параллелен плоскости отражения. Лорентцева и поляризационная поправки соответственно могут быть использованы для исправления наблюдаемой интенсивности отражения hkl следую- [c.390]


    Рассеяние света всегда происходит ио различным направлениям по отношению к проходящему лучу света. Рассеянный свет образует вокруг коллоидной частицы, являющейся центром рассеяния, светящееся поле. В грубодисиерсных системах все лучи спектра рассеиваются одинаково. В очень высокодисперсных системах интенсивность рассеяния света обратно пропорциональна длине волны в четвертой стеиени. Таким образом, наиболее сильному рассеянию подвергается свет с короткими волнами (фиолетовый и синий), свет с длинными волнами (красный и оранжевый) рассеивается слабее. Поэтому высокоднсперсные коллоидные спстемы в большинстве случаев синеватые ири наблюдении в боковом рассеянном свете, а в проходяидем свете — красноватые. Коллоидные системы с частицами, размеры которых соизмеримы с длиной волны света, обычно рассеивают лучше свет с короткими волнами. При этом разница в силе рассеяния света различных длин воли сказывается менее резко. Интенсивность рассеяния света обратно пропорциональна длине волны в третьей, второй и первой степени. [c.197]

    Причиной схода с рельсов послужило заклинивание буксы одного из вагонов вследствие перегрева. Цистерна с хлором (90 т) в результате схода с рельсов получила пробоину. После аварии цистерну, в которой оставалось 30 т хлора, залатали и оттащили с места происшествия. Местность вокруг цистерны с хлором была завалена о(5ломками, несколько цистерн с пропаном загорелись. Одна из этих цистерн взорвалась, осколки разлетелись на значительное расстояние. Высказано предположение, что восходящие потоки воздуха от горящих цистерн предотвратили интенсивное рассеяние испарившегося хлора. Пожар продолжался в течение 6 дней, в его тушении принимали участие 100 пожарных. [c.382]

    Система RYSALIS j ] определяет трехмерную структуру белка по распределению плотности электронов (РПЭ). ЭС интерпретирует информацию по дифракции рентгеновских лучей, включающую информацию о положении и интенсивности рассеянных волн, и выводит атомную структуру. ЭС использует знания о составе белка и рентгеноструктурном анализе, а также эвристики, чтобы с помощью анализа РПЭ получать и проверять гипотезы относительно правдоподобных белковых структур. HYSALIS использует архитектуру типа доски объявлений , содержащей независимые источники знаний для выдвижения и проверки многоуровневой структуры гипотез. ЭС написана на языке ЛИСП. [c.262]

    Интенсивность рассеянного излучения dli представим в виде (33) с заменой угла 6+ иа 0Г. Далее, интегрируя по всевозможнмм направлениям О,, получаем [c.506]

    В пространстве распределение интенсивности рассеянного света образует сплошную поверхность. Сечение этой поверхности плоскостями дает индикатрисы рассеяния. Интенсивность рассеянного света пропорциональна квадрату объема частиц]. . Пара.метры, входяигие в формулу Рэлея, либо характеризую г экспериментальную установку (/о, а, X), либо дисперсионную среду и дисперсную фазу (т). [c.95]

    Рентгеновское и нейтронное рассеяние. Методы рентгепострук-турного и нейтроноструктурного анализа представляют собой дифракционные методы. Рентгеновские лучи — это электромагнитные волны большой энергии. Длины волн пх лежат в интервале от 0,05 до 0,20 нм. Нейтроны — незаряженные микрочастицы, обладаюплие массой покоя. Для пучков нейтронов соответствующие им длины волн лежат в пределах 0,1 —1,0 нм. Рентгеновское излучение рассеивается электронами атомов и молекул. Интенсивность рассеянного излучения фиксируется каким-либо способом и характеризует электронную плотность. Рассеяние рентгеновских лучей на ядрах оказывается пренебрежимо малым. В свою очередь, нейтроны рассеиваются ядрами атомов. При этом упругое рассеяние медленных нейтронов позволяет изучать атомную структуру вещества, а неупругое используется для изучения динамики частиц. Механизмы рассеяния рентгеновских лучей и нейтронов похожи. [c.101]

    Дифракционное рассеяние рентгеновских лучей под малыми углами характерно для ультрамикрогетерогенных систем с частицами аморфной структуры. Природа этого я1 ле1 ия аналогична дифракции видимого света малыми экранами и отверстиями, теория которой подробно рассматривается в следующем разделе, поспященном рассеянию света. Отличия состоят не только в размерах частиц и применяемых длин воли, а главное — в соотношениях между ними. Данный метод применим, если размеры определяемых частиц сравнимы или больше длин рентгеновских лучей. В связи с этим максимум рассеяния приходится па направление, совпадающее с направлением падающих лучей. Размер же области рассеяния, т. е. угол, при котором интенсивность рассеянных лучей нрактически равна нулю (Омзкс), тем меньше, чем больше рассеивающий объем. Эту величину можно оценить по соотношению [c.253]

    Из соотношения (V. 7) следует, что дифракционное рассеяние рентгеновских лучей (Я 0,1 нм) доступно наблюдению, если рассеивающий объем отвечает объему частнц ультрамикрогетерогенных систем. Согласно (V. ) для г — 100 нм Оиакс 3 и для г = 10 нм Омякс 30. Логзрифм интенсивности рассеянных лучей иод малыми углами линейно убывает с увеличением квадрата радиуса частиц, квадрата значения угла и с уменьшением квадрата длины волны. [c.253]

    Напряженность электрического поля отражает энергию падающего светового потока. В соответствии с электромагнитной теорией интенсивность света (плотность потока энергии) пропорциональна квадрату амплитуды волны, излучаемой электрическим диполем. В свою очередь амплитуда волны пропорциональна квадрату частоты колебаний диполя. Таким образом, интенсивность рассеянного света пропорциональна частоте колебаний диполя в четвертог степени или обратно пропорциональна длине волны в четвертой степени Отсюда вытекает, что лучи с меньшей длиной волны сильнее рассеиваются. Прн рассеянии белого света дисперсной системой с мелкими частицами рассеянный свет оказывается голубым, а проходящ1П1 — красноватым, так как синие лучи имеют дл(гну волны меньше, чем красные. [c.255]

    Нефелометрически метод исследования основан на измерении интенсивности света, рассеянного дисперсной системой. Более высокая чувствительность и точность этого метода по сравнению о достигаемой в турбидиметрии позволяют определить не только концентрацию и размер частиц в золях, но и форму частиц, меж-частичные взаимодействия и другие свойства дисперсных систем, В основе нефелометрии лежит уравнение Рэлея (V. 9), Если необходимо определить только размер частиц и их концентрацию, то достаточно измерить интенсивность рассеянного света под одним углом, II поэтому уравнение Рэлея можно представить в следующем виде  [c.263]

    Если с принять за массовую концентрацию, то в знаменателе будет плотность в квадрате. Результаты анализа в данном методе могут иметь погрешности, обусловленные взаимодействием между макромолекулами в растворах. Для исключения этих погрешностей в определенпи молекулярной массы полимеров, мнцеллярной массы ПЛВ или просто массы частиц осмотически активных золей вместо метода сравнения применяют абсолютный метод Дебая. Для выражения интенсивности рассеянного света по этому методу используют уравнение Эйнштейна, получаемое на основе учета флуктуаций оптической плотности, возникающих в результате изменения осмотического давления и концентраций. Так как основной причиной рассасывания флуктуаций концентраций является изменение осмотического давления, то это дает возможность связать соотношения для рассеяния света и осмотического давления. Используя уравнение осмотического давления до второго внри-ального коэффициента Л2, учитывающего мел<частичное взаимодействие, Дебай получил следующее соотношение между мутностью раствора полимера, его концентрацией и молекулярной массой полимера  [c.264]

    Нефелометрия — метод исследования, при котором измеряют интенсивность рассеянного света, падающего на кювету с дисперсной системой. Обычно объемная концентрация с дисперсной фазы известна или легко определяется. Поэтому соотношение (IV. 1) при данной длине волны удобно записать в виде (0 = onst) [c.112]

    Покажите, в каком случае и во сколько раз интенсивность рассеянного дисперсной системой света больше при освещении синим светом (Х1 = 410 нм) или красным светом ( 2 = 630 нм). Светорасс .чние проис.ходит в соответствии с уравнением Рэлея, и интенсивности падающих монохроматических пучков света равны. [c.128]

    Необходимо отметить, что уравнение Дебая применимо только для сильно разбавленных растворов полимеров, когда с < 0,1 %. При этом оно выполняется только в том случае, если размеры макромолекуляр-ных клубков не превышают 40—50 нм, т. е. меньше 1/10Х. При больших размерах рассеиваюш,их частиц в них возникает внутримолекулярная интерференция и суммарная интенсивность светорассеяния системой уменьшается. В результате при расчете по уравнению (V. 32) получаются заниженные значения молекулярной массы. Для определения истинных значений М в таких системах необходимо учесть зависимость интенсивности рассеянного света от угла 0 [см. уравнение (IV. 1)] и в уравнение Дебая ввести соответствующую поправку. [c.147]

    При опреде,яении молекулярных характеристик методом светорассеяния следует обращать особое внимание на очистку исследуемых растворов. Поскольку интенсивность рассеянного света пропорциональна квадрату объема частиц, наличие примесей, имеющих большие размеры, чем рассеивающие свет частицы, может вызвать значител1.ные погрешности при обработке экспериментальных данных. Обычно очистку растворов проводят фильтрованием через стеклянные пористые или бактериальные фильтры, используют также метод центрифугиров.зния. [c.148]

    Физическая причина сушествованм деполяризованного рассеяния в жидкости - наличие флуктуаций анизотропии диэлектрической прони-хшемости 0(1 которые, в свою очередь, ддя жидкостей с оптически анизотропными молекулами определяются локальной неравномерностью в ориентации молекулярных осей. Флуктуации к ( ) пяются функциями времени, так как свет, рассеянный в них, оказывается промрдулированным этой функцией, что и определяет его спектр. Применяя обратное фурье-преобразование к спектральному распределению интенсивности рассеянного света, мы получаем временную корреляционную функцию, характеризующую процесс переориентации молекул. [c.29]

    Само1 1 большой интенсивность рассеяния света будет в направлении, параллельном падающему лучу, наименьшей — в перпендикулярном направлении. В промежуточных направлениях наблюдается постепенное изменение интенсивности. [c.151]


Смотреть страницы где упоминается термин Интенсивность рассеяния: [c.319]    [c.22]    [c.35]    [c.35]    [c.376]    [c.485]    [c.96]    [c.101]    [c.102]    [c.255]    [c.262]    [c.265]    [c.29]    [c.90]   
Строение материи и химическая связь (1974) -- [ c.91 ]

Введение в молекулярную теорию растворов (1956) -- [ c.114 , c.115 ]




ПОИСК







© 2025 chem21.info Реклама на сайте