Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные системы оптические свойства

    Исследование оптических свойств высокодисперсных систем имело исключительно большое значение не только для установления новых взглядов на природу коллоидных растворов, но и дало экспериментаторам методы для наблюдения за поведением коллоидов, определения их концентрации, размеров и форм частиц. Значение оптических методов также состоит в том, что они дали возможность проверить ранее имевшие гипотетический характер молекулярно-кинетические представления о строении веществ, распространить их на высокодисперсные системы,и подвести строго теоретическую базу под такие явления, как диффузия, броуновское движение, седиментация, коагуляция. Непосредственным результатом было неопровержимое доказательство реальности существования молекул. Наконец, оптические методы дали возможность экспериментально демонстрировать статистическую природу второго закона термодинамики, в частности в связи с броуновским движением. [c.314]


    Наряду с дисперсными системами в курсе коллоидной химии изучают свойства растворов высокомолекулярных веществ (ВМВ). Эти системы принципиально отличны от коллоидных систем. Растворы ВМВ — гомогенные термодинамически устойчивые обратимые системы, которые образуются самопроизвольно и по своей природе являются истинными молекулярными растворами. Однако при всех различиях их объединяет с коллоидными системами такой важный признак, как размер частиц. Молекулы ВМВ — макромолекулы как и коллоидные частицы, состоят из многих тысяч атомов. С этим связаны схожесть оптических свойств, малая скорость диффузии, низкое осмотическое давление у тех и других систем. [c.460]

    Значительное место в лекционных опытах по данному разделу коллоидной химии уделено демонстрации оптических свойств коллоидных растворов. По своим оптическим свойствам коллоидные растворы существенно отличаются от истинных низкомолекулярных веществ, а также от грубодисперсных систем. Эти свойства наглядно демонстрируются в опытах 71, 72 и 73. Методы нефелометрии и ультрамикроскопии, в основе которых лежит явление светорассеяния в коллоидных системах, демонстрируются в опытах 74 и 75. [c.148]

    Учение об оптических свойствах коллоидных и микрогетерогенных систем является одним из основных разделов коллоидной химии. Оптические свойства золя определяются свойствами коллоидных частиц, поэтому, изучая оптические свойства системы, можно установить размер, форму и строение частиц,, не видимых в обычный микроскоп. С помощью ультрамикроскопических наблюдений коллоидных систем удалось проверить основные молекулярно-кинетические представления, долгое время носившие гипотетический характер изучение оптических свойств способствовало количественному толкованию таких процессов, как диффузия, броуновское движение, седиментация, коагуляция. Наконец, ввиду того,, что космическая пыль, туманы, облака и тончайшие взвеси твердых частиц в морской и речной водах являются коллоидными и микрогетерогенными системами, сведения об оптических свойствах этих систем имеют и весьма важное практическое приложение в астрофизике, метеорологии, оптике моря. Вождение самолетов и кораблей в тумане, фотографирование с помощью инфракрасных лучей также имеют непосредственное отношение к оптике коллоидных систем. Эта область науки сделала значительные успехи в последние годы в связи с развитием авиации, астронавтики и т. д. [c.33]


    Часто природные растворы ведут себя как коллоидно-дисперсные системы, с характерными для коллоидов молекулярно-кинетическими и оптическими свойствами (глава X). Устойчивость коллоидных частиц в таких растворах существенно возрастает при попадании в них различной природы высокомолекулярных органических веществ, в частности гумусовых веществ, возникающих при неполном разложении растительных остатков. Природные коллоидные растворы участвуют в образовании коры выветривания почвенного покрова, зоны окисления, а также в образовании осадочных пород и руд. [c.160]

    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные на стр. 13 данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. Поскольку дисперсность, как мы уже видели, существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по целому ряду свойств (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова, молекулярными коллоидами, в отличие от другого класса, — типичных высокодисперсных систем — суспензоидов [1].  [c.14]

    Методы исследования золей (определение размера, формы и заряда коллоидных частиц) основаны на изучении их особых свойств, в частности оптических, обусловленных гетерогенностью и дисперсностью. Из явлений, возникающих при действии света на золь, наиболее характерно рассеяние света. Это явление проявляется в виде опалесценции при боковом расстворе-нии золя, через который проходит световой луч, внутри коллоидной системы наблюдается светящийся конус (явление Тиндаля). [c.423]

    Варианты анализа высокодисперсных систем уже рассмотрены нами в предыдущих главах. Они основаны на изучении молекулярно-кинетических и оптических свойств — диффузии, осмотического давления, среднего сдвига частиц, светорассеяния (нефелометрия, ультрамикроскопия), седиментационно-диффузионного равновесия (ультрацентрифуга), а также на применении методов электронной микроскопии и дифракции электронов. Эти методы дают сведения главным образом о среднем размере частиц. Для многих целей такая характеристика является достаточной, тем более что в коллоидных системах вариации дисперсности обычно не очень велики. [c.45]

    Одним из важнейших и наиболее ярко выраженных оптических свойств коллоидов является их способность сильно рассеивать свет. Эффект опалесценции в коллоидных системах назван по имени Тиндаля, который подробно исследовал это явление (1869 г.). [c.17]

    Очень часто природные растворы ведут себя как коллоидно-дисперсные системы с характерными для коллоидных растворов оптическими и физико-химическими свойствами. Подобные растворы активно участвуют в образовании коры выветривания почвенного покрова, а также в образовании осадочных пород и руд. [c.97]

    Здесь уместно указать, что наряду с типичными необратимыми и обратимыми системами, согласно классификации Зигмонди и Фрейндлиха, существуют и промежуточные системы, которые трудно отнести к какому-нибудь одному из обоих классов. Это, например, золи гидроокисей некоторых металлов А1(0Н)з, Ре(ОН)з, 5п(ОН)4. Исследование с помощью оптических методов указывает на присутствие в этих системах коллоидных частиц (агрегатов молекул). Имеются и другие основания считать эти системы гетеро-генными. Вместе с тем эти системы обратимы, могут быть получены с достаточно большой концентрацией дисперсной фазы и менее чувствительны к электролитам, чем типичные лиофобные системы. Такие свойства этих систем обычно объясняют исключительно большой гидратацией содержащихся в них частиц. Однако в последнее время ряд исследователей стали считать, что в этих системах в зависимости от способа получения дисперсная фаза может находиться как в виде коллоидных частиц, так и в виде макромолекул. Природа этих растворов до сих пор окончательно не ясна. К этому вопросу мы еще возвратимся в гл. IX и XIV. [c.27]


    Итак, исследование молекулярно-кинетических и оптических свойств позволяет определять одну из важнейших характеристик дисперсных систем — размеры частиц дисперсной фазы, или степень дисперсности системы. Размеры коллоидных частиц можно найти, определив коэффициент диффузии для данной коллоидной системы. Размеры их можно установить также ультрамикроскопическими и нефелометрическими наблюдениями или с помощью электронного микроскопа. Измеряя скорость седиментации частиц в грубодисперсных системах, также можно определить и степень их дисперсности. [c.47]

    Для коллоидных частиц часто наблюдается различие оптических свойств по разным их осям — по продольной и поперечной. Это явление называют оптической анизотропией. Оптическая анизотропия может быть обусловлена либо внутренним строением частиц, либо их несферической формой, либо искусственно вызванной ориентацией частиц. Явление оптической анизотропии особенно характерно для коллоидных растворов с палочкообразными, пластинчатыми, цепочечными частицами. В обычных условиях такие частицы располагаются совершенно хаотично в жидкой или газообразной среде и система в целом оптически изотропна (в разных направлениях [c.391]

    Истинные растворы оптически прозрачны через них проходит луч света. При прохождении света через коллоидные растворы происходит их рассеяние от коллоидной частицы во все стороны отходят световые волны, подобно тому как от небольшого по размерам камня при ударе им о зеркальную поверхность воды расходятся во все стороны волны. Если через коллоидный раствор пропустить пучок световых лучей, то в жидкости появляется светлый конус, видимый в темноте (рис. 80). Это явление по имени исследователей названо явлением Фарадея — Тиндаля. Средой в коллоидных системах могут быть различные вещества. Чаще всего приходится иметь дело с водными коллоидными растюрами, которые называются гидрозолями. В зависимости от среды одно и то же вещество может давать истинный или коллоидный раствор, т. е. проявлять свойства кристаллоида и коллоида. Так, сера в спирте, хлористый натрий в воде образуют истинные растворы. Первое вещество в воде и второе Б бензоле дают уже коллоидные растворы. Следовательно, правильнее говорить о кристаллоидном и коллоидном состояниях веществ. [c.236]

    Характерные оптические свойства типичных коллоидных растворов обусловливаются микрогетерогенностью, лежащей в основе их отличия от гомогенных истинных растворов. Рассмотрим общие закономерности прохождения света через коллоидные системы. Если пучок света падает на поверхность какой-либо частицы, линейные размеры которой больще длины волны падающего на нее света, происходит отражение его по законам геометрической оптики. При этом часть света может проникать внутрь частицы, испытывать преломление, внутреннее отражение и поглощаться. В случае частиц, имеющих размеры менее половины длины волны падающего на них света, отражения света от плоскостей частицы в определенных направлениях не происходит, свет рассеивается по всем направлениям, огибая частицы, встречающиеся на его пути (явление дифракции). Явление рассеяния света при прохождении яркого пучка через газообразную или жидкую среду, в которой взвешены мельчайшие частицы, впервые наблюдал Д. Тиндаль в виде светящегося конуса (рис. 102). Это явление получило название явления Тиндаля. Далее было установлено, что при пропускании пучка света через чистую воду и другие чистые жидкости, а также через истинные растворы с низкомолекулярным растворенным веществом эффект Тиндаля не наблюдается. Такие среды получили название оптически пустых. Таким образом, эффект Тиндаля явился важным средством для обнаружения коллоидного состояния, т. е. микрогетерогенности системы. [c.316]

    Микрогетерогенные и ультрамикрогетерогенные дисперсные системы благодаря соизмеримости частиц дисперсной фазы с длиной световых волн обладают специфическими оптическими свойствами. Это позволяет использовать оптические методы исследования для изучения структуры и формы частичеи , скорости их перемещения, размеров и концентрации. Оптические методы широко используются в практике определения концентрации коллоидных растворов, эмульсий, аэрозолей. Оптические характеристики аэрозолей (туманы, тучи, пыль), степень мутности водоемов имеют большое значение для авиации, метеорологии, контроля загрязнения окружающей среды. [c.388]

    По мере изменения размеров частиц от наиболее крупных к мелким и обратно будут соответственно изменяться и свойства дисперсных систем кинетические, оптические, каталитические и др. При этом коллоидные системы занимают как бы промежуточное положение между грубыми и молекулярно-дисперсными системами (табл. 29). [c.111]

    Поскольку дисперсность существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по многим свойствам (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова [1], молекулярными коллоидами, в отличие от Другого класса,— типичных высокодисперсных систем — су с п е н-ЗОИ до в [1].  [c.16]

    Наряду с электронной микроскопией для исследования тех же систем необходимо привлекать другие независимые методы — электронную дифракцию, рентгеноструктурный анализ, изучение оптических свойств, адсорбционные, химические и коллоидно-химические методы и т. д. При правильной постановке такие комплексные исследования дают не просто суммирование результатов, но позволяют глубже понять структуру объектов, получить более всесторонние сведения об изучаемой системе. [c.127]

    Коллоидные системы обычно являются двухфазными системами, в которых одна из фаз имеет размеры в пределах от 50 А до 1 л. К ним относятся дымы, туманы, эмульсии, высоко диспергированные суспензии металлов и их гидроокисей, или растворы полимеров, а также многочисленные биологические системы, например, протеины и вирусы. В течение первой четверти текущего столетия коллоидная химия утвердилась как самостоятельная отрасль науки. Коллоидные системы подчиняются особым законам и обладают специфическими свойствами, которые в значительной степени определяются размером и формой образующих их частиц. До недавнего времени о размерах и форме частиц можно было судить лишь на основании данных непрямых методов исследования, так как коллоидные частицы находятся за пределом разрешения оптического микроскопа. [c.130]

    Для растворов частиц (макромолекул), размеры которых значительно больше размеров молекул растворителя, оптические свойства подобны свойствам системы коллоидных частиц, окруженных непрерывной средой растворителя с показателем преломления п. В этом случае поле, действующее на частицу, не отличается от среднего макроскопического поля в среде, и для главных показателей преломления анизотропной среды вместо (7.27) следует пользоваться выражениями [c.515]

    Коллоидные растворы характеризуются и рядом своеобразных оптических свойств. Эти свойства также зависят от размерности частиц. Световые лучи с различной длиной волны, падающие на частицы дисперсной системы, рассеиваются ими в неодинаковой степени чем меньше частицы дисперсной фазы, тем ими сильнее рассеиваются лучи с малой длиной волны (например, фиолетовые, синие). Размеры частиц грубодисперсных систем больше длины волн падающего на них света. Проходящий через такие растворы свет в результате обычного преломления рассеивается, и эти системы опалесценцией не обладают. Также не опалесцируют и истинные растворы из-за ничтожно малых размеров частиц их дисперсной фазы. [c.293]

    Коллоидные растворы по внешнему виду часто невозможно отличить от истинных различие в оптических свойствах дисперсных систем дает возможность легко установить наличие коллоидно-растворенного вещества. Все дисперсные системы способны рассеивать свет. Рас- [c.227]

    Оптические свойства. Частицы дисперсной фазы коллоидной системы рассеивают падающий на них свет. Причиной рассеяния света является оптическая неоднородность коллоидных систем, т. е. разные оптические свойства дисперсной фазы и дисперсионной срсды. Пз этих сво11ств прежде всего следует указать показатель преломления, значение которого для дисперсной фазы и дисперсионной срсды различны. Вследствие этого луч света, проходя через дисперснониуга среду и попадая на частицу дисперсной фазы, обязательно изменяет свое направление, причем тем резче, чем больше показатель преломления дисперсной фазы отличается от показа-те. 1я преломления дисперсионной среды. Рассеяние света коллоид-И1.1МИ системами может быть различным в зависимости от соотно- [c.196]

    Некоторые исследователи уже давно допускали, что каменные угли имеют коллоидный характер. Ряд углехимиков придерживается этого мнения и в настоящее время. В качестве доказательств правильности этих взглядов они приводят высокую адсорбционную способность углей по отношению к некоторым жидкостям и парам, их способность набухать и образовывать коллоидные растворы (например, в пиридине), а также некоторые их физические и оптические свойства. Представление об углях как коллоидных системах приводит к признанию их мицеллярной структуры. [c.212]

    Специфика оптических свойств объектов коллоидной химии определяется их осповнымп признаками гетерогениостыо и дисперсностью. Гетерогенность, или наличие межфазной поверхности, обусловливает изменение наиравления (отрал<ение, преломление) световых, электронных, нонных и других лучей на границе раздела фаз и неодинаковое поглощение (пропускание) этих лучей сопряженными фазами. Дисперсные системы обладают фазовой и соответственно оптической неоднородностью. Лучи, направленные на микрогетерогенные и грубодисперснЕ е системы, падают на поверхность частиц, отражаются и преломляются под разными углами, что обусловливает выход лучей из системы в разных направлениях. Прямому прохождению лучей через дисперсную систему препятствуют также их многократные отражения и преломления прн переходах от частицы к частице. Очевидно, что даже при отсутствии поглощения интенсивность лучей, выходящих, из дисперсной системы, будет меньше первоначальной. Уменьшение интенсивности лучей в направлении их падения тем больше, чем больше неоднородность и объем системы, выше дисперсность и концентрация дисперсной фазы. Увеличение дисперсности приводит м дифракционному рассеянию лучей (опалесценции). [c.245]

    Оптические, в том числе визуальные методы наблюдения являются самым доступным средством изучения, идентификации и диагностики самых разных веществ и явлений. Перечень оптических свойств и методов контроля состава веществ и происходящих в них процессов достаточно обширен. Все они в той или иной мере применимы и к дисперсным системам. Простое перечисление существующих оптических свойств и явлений принесет мало пользы, а приемлемое по полноте описание слишком далеко уведет нас от основного предмета изучения — коллоидов. Поэтому сосредоточим внимание на одном уникальном оотическом свойстве коллоидов — способности рассеивать свет [35]. Если некоторая оптическая среда рассеивает свет, то это однозначно указывает на ее коллоидную природу. Если некоторый состав является коллоидным, то он непременно должен рассеивать свет. Никакие однородные среды не обладают способностью рассеивать свет. Другие оптические явления будут упоминаться только в той мере, в какой это необходимо для понимания тех или иных аспектов светорассеяния. [c.745]

    После краткого ознакомления с объектами коллоидной химии — наиболее часто встречающимися в природе, промышленности и быту коллоидными системами и их классификацией, — в книге последовательно рассматриваются оптические, молекулярное кинетические, поверхностные и электрические свойства таких систем, вопросы адсорбции, тонкие жидкие слои, устойчивость, коагуляция и течение коллоидных систем. В заключение приводится краткая характеристика различных видов коллоидных систем лиофоб-ных золей, порошков, суспензии, эмульсии, пен, полуколлоидов, аэрозолей. [c.6]

    Дальнейшая разработка метода молекулярных пучков, предложенного Семеновым и Шальниковым [1], а также Богданди, Бемом и Поланьи [2], привела Рогинского и Шальникова [3] к открытию нового метода получения коллоидальных систем совместной конденсацией на охлажденной жидким воздухом поверхности паров компонентов системы. Смешение этих компонентов в состоянии крайне высокой степени дисперсности приводит, по крайней мере в первой стадии процесса — до плавления полученного коллоидального льда ,— к высокой дисперсности системы, а то обстоятельство, что весь опыт протекает в высоком вакууме, позволяет получать и изучать коллоиды, которые хотя и были получены раньше [4—6], но обладали очень малой продолжительностью жизни и немедленно разлагались при соприкосновении с воздухом, что делало невозможным изучение их коллоидных, электрохимических, оптических и прочих свойств. [c.149]

    Можно считать, что классификация растворов, да1шая Оствальдом и основанная на различии размеров частиц растворенного вещества, в настоящее время является недостаточной. Несомненно, что все системы, содержащие частицы большого размера, независимо от их природы, будут обладать рядом общих свойств, и мы объединим их термином коллоиды лишь в этом смысле. Однако большинство свойств коллоидов, как то адсорбционные процессы, явления пептизации и коагуляции, оптические свойства и т. п., связывается с микрогетерогенностью коллоидных растворов и с определением коллоидных частиц как агрегатов, состоящих из большего или меньшего количества молекул и обладающих поверхностью раздела. К собственно коллоидным системам большинство исследователей относит именно системы, в которых частицы представляют собой подобные агрегаты в отличие от истинных растворов, содержащих вещество в молекулярной стенени дисперсности. При этом размеры молекул истинно-растворенного вещества, обладающего большим молекулярным весом (например, истинно-растворенные красители), могут иметь большие размеры, чем частицы тонко диспергированных коллоидов, как, например, золото или окись железа (15—20 А). Наконец в случае высокомолекулярных веществ мы имеем молекулы с молекулярным весом в несколько десятков и даже сотен тысяч, которые, по терминологии Оствальда, должны быть отнесены к коллоидным частицам. В то же время эти высокомолекулярные вещества могут присутствовать в растворе в виде отдельных молекул. Возникает вопрос, должны ли мы рассматривать растворы соединений с большим молекулярным весом как растворы коллоидные или же мы можем точнее передать их свойства, описывая их как истинные растворы Этот вопрос является одним из основных, хотя некоторые исследователи, как, например, Кройт [11, рассматривая коллоидные процессы, сознательно воздерживаются от обсуждения этого вопроса. [c.242]

    ОПТИЧЕСКИЕ СВОЙСТВА К0ЛЛ0И Д0В Рассеяние света в коллоидных системах [c.36]

    В одной из работ, посвященных анализу некоторых ферментов, в частности а-глюкозидазы, роданезы и глюкозооксидазы, Лленадо и Речниц [664] использовали автоматизированную систему, включающую в качестве датчиков ион-селективные мембранные электроды. По сравнению с колориметрической установкой Ауто-Аналайзер эта система имеет ряд преимуществ. Во-первых, электроды индифферентны к оптическим свойствам пробы, во-вторых, отсутствует необходимость подвергать пробу диализу для удаления коллоидных частиц. Точность анализа очень высока, а методика достаточно проста, и в режиме непрерывного анализа можно проводить до 20 определений в час. Автоматизированную систему и предложенную авторами методику легко применить к анализу многих ферментов, если выбрать подходящие чувствительные электроды и реакции, позволяющие получить такое производное анализируемого соединения, к которому селективны электроды. [c.212]

    Многие экспериментальные данные по оптическим, тиксотропным и реологическим свойствам, а также по пептизации, синерезису и кинетике процессов образования гелей и паст указывают на то, что большинство этих систем следует отнести к ПКС [16]. Периодическая тактоидная структура у гелей Уг05 обнаружена Думанским [37]. Еще ранее было указано на ориентированное расположение коллоидных частиц в этих гелях, возникающих при самых малых концентрациях дисперсной фазы, что подтверждает непрерывность перехода от тактоидного состояния к гелеобразному [38—40]. Установлено, что анизотропность коллоидной системы сохраняется при обратимых переходах золя в гель [41]. В гелях Ее(ОН)з и У(ОН)з обнаружена периодичность в расположении плоскостей фиксации дисперсных частиц расстояние между плоскостями, равное нескольким тысячам ангстрем, уменьшается с увеличением концентрации электролита [19, 21]. Недавно при изучении гелей гидроокиси железа с помощью эффекта Мессбауэра было показано, что в этих гелях (как при обычных условиях, так и в замороженном состоянии) коллоидные частицы отделены друг от друга слоями воды [42]. [c.14]

    Измельчение различных материалов до высокой степени дисперсности существенным образом меняет физико-химические свойства. Многие вещества, особенно металлы, часто в коллоидно-дисперсном состоянии приобретают не свойственную им в обычной обстановке интенсивную окраску. Коллоидно-дисперсные системы обладают вообще особыми оптическими свойствами. Мелкие частицы обладают повышенной твердостью и прочностью, растворимость труднорастворимых веществ в сильно измельченном состоянии увеличивается. Распыленные жидкости обладают повышенной упругостью пара. Органические вещества (крахмал, сахар, уголь, текстильные материалы) в пылеобразнодисперсном состоянии образуют с воздухом взрывоопасные смеси благодаря развитию поверхности контакта с воздухом и т. д. [c.210]


Смотреть страницы где упоминается термин Коллоидные системы оптические свойства: [c.198]    [c.10]    [c.17]    [c.154]    [c.66]    [c.258]    [c.324]   
Физико-химия коллоидов (1948) -- [ c.19 , c.23 ]

Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.73 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.528 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные оптические

Оптические свойства

Оптические свойства свойства

Системы коллоидные

Системы свойства



© 2025 chem21.info Реклама на сайте