Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анодная защита и межкристаллитная коррозия

    Так, в работе [158] было показано, что сталь, обычно склонная к межкристаллитной коррозии, не проявляет этой склонности в течение нескольких тысяч часов при анодной защите ее в сульфатно-медном растворе. При кипячении этой же стали в сульфатно-медном растворе без анодной защиты межкристаллитная коррозия обнаруживается через 24 ч. [c.127]

    Анодная защита может предотвращать локальные виды коррозии, например, межкристаллитную коррозию нержавеющих сталей, коррозию под напряжением углеродистых и нержавеющих сталей, питтинг, коррозионную усталость металлов и сплавов. [c.199]


    Потенциостат можно также использовать для исследования других нежелательных структурных компонентов нержавеющих сталей, например, феррита, а-фазы и т. д. [52, 154, 164]. Потенциалы, подходящие для травления этих компонентов, и соответствующая продолжительность травления приводятся в табл. 25 [52, 59]. Рекомендуется одновременно исследовать металлографически, какие фазы подверглись травлению [99]. Значение потенциостата для исследования коррозионных явлений, включая межкристаллитную коррозию, вытекает из предыдущих глав. Применение потенциостата делает возможным устранение межкристаллитной коррозии анодной защитой [197]. Однако потенциостат — довольно дорогой и сложный прибор, который должен обслуживать квалифицированный специалист. [c.191]

    Анодная защита и межкристаллитная коррозия нержавеющих сталей [c.17]

    При анодной защите нержавеющих сталей следует учитывать их склонность в определенных условиях к таким видам коррозии, как межкристаллитная и питтинговая, коррозионное растрескивание. Поэтому первоначально высказывались сомнения в отношении эффективности анодной защиты аппаратов из нержавеющих сталей [34]. [c.17]

    Анодная защита и межкристаллитная коррозия [c.121]

    В противоположность катодной защите при анодной защите обычно имеются только узко ограниченные области защитных потенциалов, в которых возможна защита от корозии. По этой причине при анодной защите нужно в общем случае применять защитные установки с регулированием потенциала. Область защитных потенциалов может быть сильно сужена особыми процессами коррозии, например язвенной (сквозной) коррозией коррозионностойких сталей под влиянием хлоридов. В таком случае анодная защита иногда практически уже не может быть применена. Склонность к местной коррозии, обусловленная свойствами материала, тоже может сделать анодную защиту неэффективной. Сюда относится, например, склонность к межкристаллитной коррозии у коррозионностойких высокохромистых сталей и сплавов на основе никеля. [c.390]

    В последнее время разработаны экономичные и совершенные методы определения МКК нержавеющих сталей 42—44], а также электрохимический способ количественного определения склонности нержавеющих сталей к МКК. Полученные результаты убедительно свидетельствуют о том, что межкристаллитная коррозия нержавеющих сталей протекает в ограниченной области потенциалов. Поэтому нет оснований опасаться возможного проявления МКК в области устойчивой пассивности, т. е. в условиях анодной защиты. Более того, сталь, склонная к МКК, может уснешно эксплуатироваться в условиях анодной защиты. Об этом изложено в работе П. Д. Томашова, Г. П. Черновой и О. П. Марковой [39]. Ими исследована возможность защиты стали 2Х18Н9 от межкристаллитной коррозии смещением потенциала, достигаемым анодной поляризацией. [c.18]


    Такпм образом, применяя анодную защиту, можно предотвратить межкристаллитную коррозию сталей, склонных к этому виду коррозии, что подтверждается дальнейшими работами Франса и Грина [45], Штрайхера [46]. [c.18]

    Недостаток нержавеющих сталей — их склонность при некоторых определенных условиях к межкристаллитной коррозии, питтинговой коррозии и коррозионному растрескиванию. Эти опасные виды коррозионного разрушения происходят главным образом вследствие частичного (местного) нарушения пассивного состояния. Поэтому необходимо выяснить влияние анодной поля ризации на эти виды коррозии. Так как метод анодной защиты только начинает развиваться, то пока можно привести первые предварительные данные по этому вопросу. [c.121]

    Такое большое разнообразие сред и металлов требует для рекомендации анодной защиты предварительного лабораторного исследования конкретной коррозионной системы. Снятие анодных потенциостатических кривых необходимо дополнить металлографическими и другими видами исследований, так как в некоторых случаях в определенной области нотенциалов возмон но протекание питтинговой, межкристаллитной или избирательной коррозии под напряжением, что ограничивает область потенциалов, пригодную для анодной защиты. [c.152]

    Среди типовых автоматических источников тока для систем анодной защиты следует выделить регуляторы потенциала РППД-5 (на О—1 В и 5 А) и П20М1 (на 4 В и 20 А), системы Донец-12 (на О—1 В и 20 А) и Анод-50 (на 4 В и 50 А), Кроме того, может представить практический интерес разработанный НИФХИ имени А. Я. Карпова для контроля межкристаллитной коррозии потенциостатический комплекс ка 2 В и 15 А. При небольшом выходном напряжении (6 В) он имеет высокую точность поддерживания потенциала ( 3 мВ) и время отработки не более 10 с. [c.85]

    Сплавы на алюминиевой основе также испытывались в течение 20 лет и было найдено, что они вначале теряют механическую прочность быстро, но затем потеря механических свойств замедляется и затем становится постоянной (см. стр. 479). Скорость разрушения, определенная по глубине коррозионных поражений, также имеет тенденцию к уменьшению со временем. Очень хорошую коррозионную стойкость показали некоторые плакированные алюминиевые сплавы. В морских условиях плакированные, термически обрабатываемые сплавы также устойчивы, но незащищенные сплавы, содержащие медь при ненормальном режиме закалки или старения, становились очень склонными к межкристаллитной коррозии. Анодное оксидирование было признано более защитным, чем химическое оксидирование анодированиеспла-вов с последующим нанесением краски, пигментированной хроматом цинка или алюминиевой пудрой, обеспечивало исключительно хорошую защиту в течение 20 лет в морских условиях и в течение 22 лет в городских условиях. [c.473]

    Некоторое затруднение в применении анодной электрохимической защиты — потребность в большом токе для пассивации конструкции — может быть устранено а) постепенным заполнением конструкции раствором под током б) предварительной пассивацией защищаемой поверхности пассивирующими растворами (например, 60% НЫОд + 10% К3СГ2О7) в) применением импульсных источников постоянного тока. Следует также поддерживать потенциал защищаемой конструкции в области оптимальных его значений, чтобы избежать возможного протекания некоторых видов местной коррозии (точечной, межкристаллитной и избирательной коррозии под напряжением). Слабым местом этого вида защиты является недейственность его выше ватерлинии, а иногда и недостаточность по ватерлинии, что требует иногда дополнения его другими методами защиты, в частности использованием для [c.321]


Смотреть страницы где упоминается термин Анодная защита и межкристаллитная коррозия: [c.72]    [c.133]    [c.257]    [c.126]    [c.86]    [c.128]    [c.183]    [c.72]    [c.756]    [c.634]   
Смотреть главы в:

Пассивность и защита металлов от коррозии -> Анодная защита и межкристаллитная коррозия




ПОИСК





Смотрите так же термины и статьи:

Анодная защита и межкристаллитная коррозия нержавеющих сталей

Защита от коррозии

Межкристаллитная коррози

Межкристаллитная коррозия

Ток анодный



© 2024 chem21.info Реклама на сайте