Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная усталость металлов

    КОРРОЗИОННАЯ УСТАЛОСТЬ МЕТАЛЛОВ [c.106]

    Испытания на коррозионную усталость металлов проводят на обычных машинах для определения предела усталости, к которым приспособлены устройства для осуш,ествления подвода коррозионной среды к образцу (рис. 340), или на специально предназначенных для испытаний металлов на коррозионную усталость машинах. В испытаниях определяют число циклов N до разрушения образца при заданных напряжениях а и строят кривую зависимости числа циклов от напряжения (см. рис. 235). [c.451]


    Коррозионной усталости металлов посвящены исследования Эванса, А. В. [c.336]

    Влияние напряжений на коррозию многократно усиливается в местах резких изменений геометрической формы поверхности, являющихся концентраторами напряжения (сварные соединения, поверхностные дефекты, царапины, задиры и т. п.), что вызывает неравномерность коррозии и ее локализацию. В результате этого может возникнуть коррозионная усталость металла, характеризующаяся развитием коррозионного процесса в вершине коррозионно-механической трещины, приводящей к разрушению. Факты подтверждают коррозионно-усталостную природу возникновения трещин при разрушениях на ряде нефтепроводов [166]. [c.222]

    Коррозионная стойкость сталей существенно снижается вследствие ряда факторов, к которым относятся усадочные раковины, ликвационная рыхлость (неравномерное распределение примесей по всему объему), красноломкость, хладноломкость, наклеп (поверхностное упрочнение металлов) и т. д. Интенсивность коррозии возрастает также под воздействием знакопеременных нагрузок (коррозионная усталость металла). [c.13]

    К рассматриваемой области относится также так называемая коррозионная усталость металлов. Сущность явления состоит в понижении прочности металлического изделия в результате одновременного воздействия на него коррозионных процессов и переменных нагрузок (последний фактор еще усиливает коррозию). [c.357]

    Таким образом, на основании вышеизложенного может быть сделан вывод о том, что в настоящее время не в полной мере изучены достаточные условия возникновения КР. Последнее, по нашему мнению [22], может быть получено из сравнительного анализа условий работы магистральных трубопроводов, транспортирующих жидкие углеводороды и газ. Так, первые эксплуатируются в условиях жесткого нагружения и характерным для них видом коррозионно-механического разрушения является коррозионная усталость металла. Для вторых, эксплуатирующихся в условиях мягкого нагружения, характерно КР, а не коррозионная усталость. Кроме того, частоты переменных напряжений, действующих на трубопроводы, различны. На маги- [c.82]

    Несущая способность деталей ирн коррозионной усталости может снижаться в десятки раз по сравнению с усталостной прочностью па воздухе и по абсолютным значениям составлять 20 — 100 МПа (см. рис. 27). При этом необходимо учитывать, что коррозионной усталости подвергаются практически все конструкционные металлы и сплавы на основе железа, хрома, никеля, алюминия, меди и в меньшей степени титана. Коррозионная усталость металлов может проявляться в растворах солей, щелочей, кислот, воде и во влажном воздухе. [c.80]


    Несмотря на то, что процессы коррозионной усталости металлов являются предметом широких исследований, особенно интенсивных в течение последних тридцати лет, в настоящее время все еще нет единой точки зрения, единой теории, объясняющей механизм коррозионной усталости металлов. [c.81]

    Для проведения исследований коррозионной усталости металлов на образцах ограниченных размеров разработана методика изучения скорости роста усталостных трещин при заданном коэффициенте интенсивности напряжений [111] и создано специальное оборудование (рис. 22). Образец 9, закрепленный в верхнем 4 и нижнем 11 захватах, подвергается изгибу путем поворота планшайбы 3 вокруг оси, расположенной по центру образца. Нагрузка на образец создается вибратором 6, жестко закрепленным на планшайбе 3, которая вращается вокруг оси опоры 2. Прикладываемую нагрузку на образец измеряют посредством динамометра 12. Натяжением пружин 5 или 7 в одну или другую сторону создается асимметрия цикла. Нижний захват, динамометр и стойка /3 составляют один жесткий узел, закрепленный вместе с опорой 2 на массивной плите [c.48]

    Выделяют следующие основные характерные черты коррозионной усталости металлов [18,71,72]  [c.45]

    В качестве жидких коррозионных сред при исследовании коррозионной усталости металлов наиболее часто применяют дистиллированную, водопроводную и морскую воду, а также водные растворы хлоридов натрия, магния и других солей, реже — растворов кислот. Доминирующее использование этих сред связано с их наиболее широким распространением в эксплуатационных условиях. По приближенным оценкам 90—95 % случаев коррозионно-усталостного разрушения металлических конструкций связано с воздействием именно этих жидких коррозионных сред. Они существенно различаются по химическому составу, величине водородного показателя pH, количеству растворенного кислорода и поэтому оказывают различное влияние на сопротивление коррозионно-усталостному разрушению. [c.105]

    В мировой практике известен ряд крупных катастроф с морскими судами, самолетами, энергетическими установками, происшедших из-за коррозионного растрескивания или коррозионной усталости металла. Так, коррозионно-механическое разрушение Серебряного моста через реку Огайо в США в 1967 г. привело к катастрофе, вследствие которой погибло сорок шесть человек, нанесен огромный материальный ущерб. [c.3]

    Это процесс постепенного накопления повреждений материала под воздействием переменных напряжений и коррозионно-активных сред, приводящий к изменению свойств, образованию коррозионно-усталостных трещин, их развитию и разрушению изделия. Этому виду разрушения в определенных условиях могут быть подвержены все конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Опасность коррозионно-усталостного разрушения заключается в том, что оно протекает практически в любых коррозионных средах, включая такие относительно слабые среды, как влажный воздух и газы, спирты, влажные машинные масла, не говоря уже о водных растворах солей и кислот, в которых происходит резкое, иногда катастрофическое снижение предела выносливости металлов. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, но наиболее она распространена в химической, энергетической, нефтегазодобывающей, горнорудной промышленности, в транспортной технике. Коррозионно-усталостному разрушению подвергаются стальные канаты, элементы бурильной колонны, лопатки компрессоров и турбин, трубопроводы, гребные винты и валы, корпуса кораблей, обшивки самолетов, детали насосов, рессоры, пружины, крепежные элементы, металлические инженерные сооружения и пр. Потеря гребного винта современным крупнотоннажным судном в открытом океане приносит убытки, исчисляемые миллионами рублей. [c.11]

    Традиционные методы изучения коррозионной усталости металлов базируются на определении числа нагружений или времени до разрушения циклически дефор-мируемых в коррозионной среде образцов при заданной амплитуде переменных напряжений или деформаций и построении кривых усталости в полулогарифмических или двойных логарифмических координатах. Такой подход хотя и дает ценную информацию о долговечности изделий, однако не позволяет более глубоко проанализировать стадийность разрушения. Поэтому в последние годы интенсивно ведут поиск новых кинетических подходов к оценке коррозионно-усталостного разрушения конструкционных материалов, которые базируются на законах механики разрушения, физики твердого тела, физики металлов, электрохимии и других фундаментальных наук. Рассмотрим кратко эти подходы.  [c.38]

    Таким образом, наиболее частая причина отказа — коррозионное растрескивание. Оно является следствием двух одновременно действующих факторов — агрессивности среды и остаточных напряжений в металле. При этом коррозионное растрескивание наблюдается только при растягивающих напряжениях. Аналогичное влияние агресс1шная среда оказывает п на усталость металла. При одновременном воздействии знакопеременных напряжений н агрессивной среды появляется коррозионная усталость металла. [c.48]


    Многие детали машин подвергаются одновременному действию переменных напряжений и коррозионной среды, что весьма сильно понижает кривую Вёлера и изменяет ее характер металл не имеет предела усталости, так как кривая коррозионной усталости металла все время снижается (кривая 2 на рис. 233). Такой ход кривой обусловлен тем, что если бы переменные напряжения отсутствовали совсем, образец через какое-то время все равно разрушился бы от коррозии. В качестве условного предела коррозионной усталости (выносливости) металла принимают максимальное механическое напряжение, при котором еще не происходит разрушение металла после одновременного воздействия установленного числа циклов N (чаще всего N 10 ) переменной нагрузки и заданных коррозионных условий. [c.336]

    При одновременном во0действ1ш коррозионной среды и пере-. менных напряжения имеет место так называемая коррозионная усталость металла. В этом случав срок службы металлического изделия понижается по сравнению с работой в обычных условиях ( на воздухе). [c.40]

    Анодная защита может предотвращать локальные виды коррозии, например, межк-ристаллнтную коррозию нержавеющих сталей, коррозию под напряжением чтлеродцстых и нержавеющих сталей, питтинг, коррозионную усталость металлов п сплавов. [c.73]

    В 1992 г. планируется выпустить справочник, написанный этими же авторами и являющийся продолжением данной темы, — о химической стойкости металлических и неметаллических материалов в щелочах, жидком аммиаке, ряде органических кислот, растворах и расплавах наиболее употребительных солей, жидких металлах, атмосфере, морской воде. Будут также рассмотрены вопросы коррозионной усталости металлов и еплавов. [c.10]

    Однако в реальных условиях магистральные нефтепроводы и их сварные узлы испытывают действие как статических, так и малоцикловых (повторно-статических) нагрузок от колебаний давления нефти (за сутки может наблюдаться несколько циклов), температуры и других силовых воздействий при одновременном действии коррозионной среды (внутренней или внешней), приводящих в совокупности к коррозионной усталости металла. Раздель- [c.221]

    Гликман Л. А., Костров Е. Н. Особенности коррозионно усталостного разрушения нержавеющих сталей 1Х18Н9Т. — В кн. Коррозионная усталость металлов. Львов Каменяр, 1964, с. 16—26. [c.115]

    Гликман Л. А., Костров Е. Н. Влияние чувствительности нержавеющих сталей типа 18-8 к межкристаллитной коррозии на коррозионную усталость. — В кп Коррозионная усталость металлов. Львов Каменяр, 1964, с. 96—104. [c.115]

    Проведен анализ аварийности и причин отказов сварных соединений и основного металла труб нефте- и нефтепродуктопроводов. Установлено, что основными причинами отказов являются несовершенства проектных решений, заводской брак труб, брак строительно-монтажных работ, общая и язвенная коррозия, коррозионное растрескивание и коррозионная усталость металла нефтепроводов, нарушения правил эксплуатации, включающие ошибки обслу- [c.7]

    Приведены теоретические сведения о коррозии и коррозионно-усталостном разрушении металлов, дан анализ современных методов и средств изучения коррозионной усталости. Показано влияние на сопротивление коррозионной усталости металлов и сплавов их структуры, агрессивности среды, масштабного фактора, частоты припожения механической нагрузки и других факторов. Описаны закономерности коррозионно-усталостного разрушения сталей, подвергнутых упрочняющим поверхностным обработкам. Рассмотрены вопросы электрохимической защиты металлов от коррозионно-усталостного разрушения. [c.2]

    Третьей группой факторов, определяющих долговечность изделия, являются эксплуатационные. К ним относятся агрессивность среды, ее температура, давление, скорость перемещения, наличие активаторов или пас-сиваторов коррозионного процесса и др. Поскольку условип эксплуатации. из-за необходимости обеспечения требуемых технологических параметров менять практически невозможно, радикальными способами повышения коррозионно-механической стойкости в этом случае являются ингибирование рабочих сред и электрохимическая защита оборудования. Ингибиторы коррозии известны давно и широко применяются на практике. Однако не всякие ингибиторы коррозии могут быть эффективными ингибиторами коррозионной усталости. Целенаправленный синтез ингибиторов коррозионно-механического разрушения начат сравнительно недавно, поэтому число работ, посвященных их влиянию на коррозионную усталость металлов, крайне ограниченно. [c.4]

    Все эти аспекты коррозионной усталости металлов рассматриваются в настоящей монографии. В основу ее положены экспериментальные данные, полученные автором, его коллегами и учениками в Физико-механическом институте им. Г.В.Карпенко АН УССР за последние 15-20 лет. В ней кратко рассмотрены также отдельные данные, полученные известны- [c.4]

    Исследования коррозионной усталости металлов проводят с использованием образцов различных геометрических форм, а во многих случаях— моделей или реальных деталей или узлов машин и аппаратов. Для получения сравнительной оценки влйяния структуры, химического состава металла, агрессивности среды,окружающей температуры, параметров циклического нагружения и других факторов используют обычно образцы диаметром или толщиной 5—12 мм. Влияние масштабного и геометрического факторов изучают на нестандартных образцах диам- тром или толщиной поперечного сечения от 0,1 до 200 мм и более — гладких цилиндрических, призматических, плоских с различным отношением сечения к длине рабочей части, а также с концентраторами напряжений в виде выточек, отверстий, уступов и пр. Оценку влияния прессовых, шпоночных, резьбовых, сварных, клеевых и тому подобных соединений металлов на их сопротивление усталости проводят на моделях таких соединений уменьшенных размеров, реже — на натурных соединениях (элементы судовых ва-лопроводов, бурильной колонны, сосудов высокого давления, лопатки турбин, колеса насосов и вентиляторов, стальные канаты, цепи, глубиннонасосные штанги и др.). [c.22]

    В ФМИ им. Г.В.Карпенко АН УССР разработана гамма испытательных машин (табл. 1) для изучения малоцикловой и коррозионной усталости металлов - в виде плоских образцов рабочей толщиной 0,5-100 мм [90]. На базе указанных машин созданы некоторые разновидности оборудования, предназначенного для испытания образцов в условиях воздействия низких или повышенных температур и давлений, а также некоторых газовых сред. [c.32]

    Зависимость масштабного фактора от длины образца обнаружена при испытании образцов диаметром 4 мм из отожженной стали 40X при пульсирующем осевом растяжении и воздействии коррозионной среды (Карпенко Г.В. и др. [182, с. 505—508]). Так с увеличением длины образца с 20 до 72 мм и уменьшением прикладываемого напряжения долговечность снижается на 4—8 млн. цикл. На основании этих результатов можно сделать заключение о справедливости статистической теории для объяснения коррозионной усталости металлов при равномерном распределении напряжений по сечению образца, т.е. при отсутствии градиента напряжений. С увеличением диаметра образцов до 10 мм изменение их длины в интервале 90— 150 мм уже не оказывает существенного влияния на йыносливость стали 40X в аналогичных условиях. Это обстоятельство не противоречит статистической теории, а только подтверждает ее вь(вод о затухающем влиянии фактора неоднородности металла. [c.134]

    Изменение гидравлических режимов работы нефтесборных коллекторов привело к тому, что большая их часть стала испытывать не только статические (давление газожидкостной смеси) и маяоцикловые (связанные с периодическими изменениями загрузки трубопроводов), но и циклические нагрузки. Одновременное воздействие афессивной коррозионной среды и циклических напряжений на металл трубопроводов приводит к коррозионной усталости металла, характеризующейся локализацией коррозионных процессов в вершинах коррозионномеханических трещин. При циклическом нагружении металла, упругопластические деформации, локализованные в концентраторе напряжений, приводят к интенсивной локальной коррозии (механохимическая коррозия) и развитию коррозионно-усталостной трещины. [c.487]


Библиография для Коррозионная усталость металлов: [c.17]    [c.199]    [c.201]    [c.425]    [c.415]    [c.116]    [c.138]    [c.201]   
Смотреть страницы где упоминается термин Коррозионная усталость металлов: [c.287]    [c.14]    [c.82]    [c.478]   
Смотреть главы в:

Коррозия химической аппаратуры -> Коррозионная усталость металлов

Коррозия под напряжением -> Коррозионная усталость металлов

Лабораторные работы по коррозии и защите металлов Издание 2 -> Коррозионная усталость металлов

Коррозия химической аппаратуры и коррозионностойкие материалы Изд 4 -> Коррозионная усталость металлов


Общая химия ( издание 3 ) (1979) -- [ c.376 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная усталость

Металлы коррозионное металлов

Усталость



© 2025 chem21.info Реклама на сайте