Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Материалы для морских условий

    Значительная часть этой главы посвящена коррозионному поведению обычной (углеродистой) нелегированной стали, что объясняется двумя причинами. Во-первых, это наиболее широко применяемый в морских условиях конструкционный материал, а во-вторых, факторы, влияющие на коррозию, изучены в этом случае наиболее детально. Скорость коррозии нелегированной стали (в дальнейшем будем называть ее просто сталью) в значительной степени определяется кинетикой катодного восстановления кислорода. [c.13]


    Магний и магниевые сплавы по причине повышенной активности их в средах, содержащих хлор-ион, как правило, не применяются в качестве конструкционного материала для морских условий. В последнее время В морской практике находят применение протекторы из магниевых сплавов. Для этой цели применяются главным образом магниевые сплавы с 6% алюминия, 3% цинка и 0,2% марганца, дающие наиболее равномерное растворение протектора. [c.423]

    Палладий по коррозионной стойкости в морских условиях приближается к платине. В качестве материала для анодов палладий также обладает высокой стойкостью, хотя и несколько уступает платине. [c.163]

    Флюидоупоры ВЫСОКОГО качества широко распространены в морских умеренно глубоководных и глубоководных отложениях. Здесь глинистые породы отличаются преимущественно гидрослюдистым и монтмориллонитовым составом с незначительной примесью песчаного материала, региональной выдержанностью параметров на больщих расстояниях. В мелководно-морских условиях формируются породы-покрышки, как правило, зонального распространения со значительной примесью алевритового и песчаного материала, содержащие в своем составе каолинит, снижающий их экранирующие свойства. [c.62]

    Этот вид испытания в результате высокой жесткости (действие опасного для нержавеющих сталей СГ) является ускоренным при оценке поведения стали в любых климатических условиях и дает сведения о поведении материала в морских условиях. [c.121]

    Запатентованные средства часто представляют собой смеси. биоцидов для обеспечения наилучшей защиты от широкого круга грибков и морских водорослей. Испытания на эффективность действия против грибков и водорослей не простые, однако производители биоцидов помогают правильно выбрать тип и количество биоцида для конкретного лакокрасочного материала и условий эксплуатации покрытия. [c.124]

    Тип 1 представляет собой кероген с наиболее высоким начальным атомным отношением Н/С и наиболее низким значением отношения О/С. Такой кероген состоит из липидного водорослевого материала, в значительной степени содержащего алифатические цепочки. Но значениям атомных отношений тип 1 близок к нефти, формируется в озерных и морских условиях и характерен для сапропелитовых углей класса богхеда Рис.4 [c.68]

    Широкое применение находят литейные магниевые сплавы (главным образом типа МЛ-4, а также МЛ-5) в качестве протекторов для защиты стальных конструкций в почвенных и морских условиях. Сильно отрицательный потенциал магния сообщает протекторам из магниевых сплавов большую электрохимическую эффективность по сравнению с протекторами на основе сплавов цинка или алюминия, а небольшой электрохимический эквивалент магния делает протекторы из магниевых оплавов, несмотря на их заметно повышенную по сравнению с цинком скорость саморастворения, наиболее экономичными, т. е. позволяет получить максимальное количество электричества на 1 кг растворенного материала протектора. Уже многие тысячи протекторов из магниевых сплавов защищают наши магистральные трубопроводы от почвенной коррозии. [c.554]


    В условиях полного погружения в морскую воду скорости коррозии низколегированных сталей, рассчитанные по потерям массы, составляют от 60 до 130 мкм/год. Следовательно, низколегированные стали, как материал для погружаемых конструкций, не обладают заметным преимуществом в отношении коррозии перед углеродистой сталью. [c.51]

    Однако нужно заметить, что скопления морской травы, по-видимому, не представляют того органического материала, из которого могла бы образоваться нефть, так как главную составную часть его представляет клетчатка (углевод), которая при наличии некоторых условий подвергается процессу не битуминизации, а обогащения углеродом, что дает начало углям, а не нефти. [c.185]

    При выборе средства временной противокоррозионной защиты (консервационного смазочного материала) для достижения наибольшей эффективности необходимо учитывать все аспекты его использования вид защищаемого изделия, его конфигурацию, применяемые при его изготовлении металлы (черные, цветные) характеристику климата (холодный, умеренный, сухой, влажный тропический) и атмосферы (сельская, лесная, горная, промышленная, морская), а также условия (категории) хранения, транспортирования и эксплуатации изделий (ГОСТ 15150-69)  [c.370]

    К смазкам на смешанных мыльно-углеводородных загустителях относится МС-70 (алюминиево-бариевое мыло и церезин), используемая в качестве защитно-антифрикционного материала в условиях постоянного контакта с морской и речной водой. В ассортименте отечественных смазок имеются также смазки на бариевых обычных (уплотнительная МГС) и комплексных мылах (ШРБ-4), на цинковых — бензиноупорная БУ в состав ряда смазок входят свинцовые мыла и др. [c.380]

    Одни и те же полимерные материалы при разных условиях и режиме испытания подвергаются разрушению по-разному. Наиболее сильное разрушение материала отмечено при переменном смачивании образцов морской водой и высушивании их под навесом. [c.98]

    Сталь. Малоуглеродистая сталь корродирует в морской атмосфере со скоростью от 25 до 760 мкм/год [12]. Столь широкие пределы изменения скорости можно объяснить, во-первых, различием условий экспозиции, во-вторых различным содержанием некоторых примесей в стали и, в третьих, разным состоянием поверхности материала в начале экспозиции. [c.29]

    Успешное применение алюминиевых сплавов в условиях морских атмосфер определяется правильным выбором материала и технологии изготовления конструкции. Причиной ускоренного разрушения может стать и плохое качество выполняемых работ. Очень часто разрушение происходит в сварных соединениях. [c.156]

    Предшественники нефтяных азааренов точно до сих пор неизвестны и, вероятно, не имеет суш ественного значения исходный органический материал — морской или континентальный. Однако существующие органические структуры пригодны для объяснения путей образования АС. АС во время катагенеза выделяются по пути, обычному для ареновых структур, когда длинные алкильные цепи циклизуются и ароматизируются в подходящих для этого условиях. Остаются лишь короткие алкильные цепи. Косвенным подтверждением этого является идентификация азааренов в коксовом газойле, структура которых свидетельствует о термическом [c.74]

    Листовой материал, трубы для гидравлических систем Сварные сосуды, работающие под давлением в морских условиях, в автомобилестроении, авиации, криогенной технике, в военной технике, а также для телевизионных вышек, транспортного оборудования, компонентов реактивных снарядов Перспективный листовой материал для авиационноп техники Сварные конструкции, сосуды, работающие под давлением, морская техника [c.153]

    Рассмотрены асе факторы, вызывающие разрушение в различных морских условиях сталей, меди, никеля, алюминия, титана, а также неметаллических материалов, включая полимеры и композиционные материалы на их основе, керамику, изделия из бумаги, текстиль, магнитную ленту. Показано поведение деталей радиоэлектронной аппаратуры, ракетного топлива и взрывчатых веществ. Приведены сведения о скорости коррозии металлов и их сплавов на различных глубинах. Представлен экспериментальный материал, полученный при изучении свыше 20000 образцов сплавов 475 марок при их выдержке в натурных условиях от трех месяцев до трех лет. Описана также коррозия, контролируемая биофакторами, в применении к различным географическим районам. [c.4]

    Нелегированная углеродистая сталь — важнейший конструкционный материал, уже длительное время широко используемый в морских условиях. В последнее время более широкое применение находят низколегированные стали, обладающие повышенной прочностью. В некоторых специальных случаях применяют также другие материалы иа основе л<елеза, например чугун, а также сварочное и технически чистое железо. Выбор сталей в качестве материала для морских конструкций обусловлен такими факторами, как доступность, низкая стоимость, хорошая обрабатываемость, опыт ироектирования, физические и механические свойства. [c.28]


    Основной источник монацита — прибрежно-морские и аллювиальные россыпи, широко распространенные в США, Бразилии, Индии, Канаде, Конго, Шри Ланке, Малагасийской республике, Уругвае [12]. Чаще всего монацит встречается совместно с ильменитом рутилом, цирконом, гранатом, магнетитом, турмалином [27]. Техни чески пригодны залежи, содержащие 0,1—5% монацита. /Состав мона цитовых месторождений настолько различен,- что дать подробную об щую схему обогащения невозможно. Тяжелые минералы (циркон, иль менит, монацит и др.) обычно отделяют от пустой породы грохочением Полученный таким путем коллективный концентрат в дальнейшем обогащают, получая в конце процесса несколько ценных концентратов. Для отделения рутила и ильменита коллективный концентрат подвергают электростатической сепарации. Основу метода составляет разная способность частиц минералов, попадающих в электрическое поле, приобретать заряд. Необходимое условие электростатической сепарации — предварительное высушивание материала [29]. При электростатической сепарации неэлектропроводные циркон и монацит отделяются от электропроводных титановых минералов, концентрируясь в хвостах . Хвосты , содержащие монацит и циркон, перео-чищают на спиральных сепараторах, где от них дополнительно отделяется (по плотности) пустая порода. Затем их подвергают повторной электростатической сепарации для дополнительного отделения рутила. Монацит и циркон разделяют электромагнитной сепарацией, основанной на различной магнитной восприимчивости указанных минералов. Слабомагнитный монацит, попадая в магнитное поле, намагничивается и отделяется от немагнитного циркона, остающегося в хвостах. Для доводки концентратов в некоторых случаях применяют гравитационный метод обогащения или флотацию. [c.93]

    Часто молено встретить упоминание о прекрасной коррозионной стойкости в морских условиях старого пудлингового сварочного железа. Некоторые маяки Береговой службы США, построенные из этого материала на побережье Флориды и Мексиканского залива, прослужили уже более 100 лет. Сообщалось, что важную роль в обеспечении столь длительной эксплуатации сооружений сыграло частое обновление защитных покрытий — цинкового и смешаного, состоящего из жира и ваты. Высокая коррозионная стойкость пудлингового железа отмечена в подводной и надводной частях этих конструкций, тогда как металл в зоне брызг подвергался более сильному разрушению и несколько раз за 100 лет все же потребовал ремонта. [c.33]

    Ряд исследований был посвящен изучению коррозионного растрескивания бериллия под напряжением в солевых растворах. Согласно имеющимся на сегодняшний день данным технически чистый бериллий не склонен к коррозии под напряжением в солевых растворах или в морской воде. В то же время сильная питтинговая коррозия, происходящая в этих средах, значительно снижает способность бериллия выдерживать напряжение. Согласно некоторым данным приложенное напряжение, хотя и не сопровождается увеличением плотности питтингов на поверхности, способствует ускоренному росту отдельных питтпнгов. Применение бериллия в морских условиях требует принятия дополнительных мер противокоррозионной защиты. Высокой устойчивостью в солевых растворах обладают анодированные покрытия с пропиткой силикатом натрия. Используются также алюминиевые покрытия с керамическим связующим (Serme Tel W). Прекрасные результаты получены при нанесении двойного слоя такого материала на предварительно обдутую металлической крошкой поверхность бериллия (сушка при 80 °С п отверждение при 343 С) ГЮ7]. В морских атмосферах это покрытие может использоваться при температурах свыше 200 °С, тогда как анодированное покрытие в этих условиях становится неустойчивым. [c.158]

    Цеолиты туфогенно-осадочных формаций образуются в результате диагенетических и гидротермально-диагенетических преобразований тонкого пирокластического материала преимущественно кислого состава, отложенного в озерных, лагунных или морских условиях. К раннедиагене-тическим могут быть отнесены цеолитизированные туфогенные осадки соляных и содовых озер. Основными цеолитами здесь являются шабазит, филлипсит, реже эрионит и клиноптилолит, которые ассоциируют с растворимыми карбонатами и борными солями. [c.19]

    Стоимость защиты стали от коррозии в морских условиях очень высока, однако нередко эти затраты бывают отчасти излищними. Можно назвать две причины подобной перезащиты . Во-первых, объемный и непривлекательный вид продуктов коррозии, создающий впечатление значительного разрушения металла, хотя действительные скорости коррозии материала при продолжительной эксплуатации известны сравнительно плохо. Скорости коррозии, приводимые в литературе, получены, как правило, в краткосрочных испытаниях и представляют средние значения за весь период экспозиции. Известно, однако, что коррозия углеродистой стали в морских условиях обычно протекает очень быстро в начальный период, а затем выходит на стационарный режим, характеризуемый линейной зависимостью. Этот линейный участок зависимости коррозионных потерь от времени и определяет стационарную скорость коррозии — наиболее важный параметр для оценки срока службы стальной конструкции в морской воде. Во-вторых, чрезмерные защитные меры связаны с плохо изученным влиянием биологической активности среды на скорости коррозии металла. Сплавы на основе железа, по-видимому, в наибольшей степени подверл<ены воздействию морских организмов среди всех металлов, однако эти биологические факторы практически игнорируются коррозионистами. В классических курсах коррозии влияние биологической активности на коррозионные процессы либо не упоминается совсем, либо считается несущественным и изолированным явлением. [c.441]

    Обш ий ход трансформации ОВ в процессе седиментогенеза представляется следующим (по Д. Вельте) распавшийся клеточный материал— водорастворимый комплекс, содержащий аминокислоты и углеводы—фульвокислоты— гумино-вые кислоты—гумины (кероген отложений). Кроме того, в отложения поступают растительный детрит и различные высокоустойчивые фрагменты живого вещества (воски, смолы, пыльца и др.). Количество и компонентный состав захороняемо-го ОВ зависят от динамики изменения и особенностей таких седиментогенных факторов, как ландшафтно-климатическая и геологическая обстановка в областях сноса, транзит (преимущественно на суше) и осадконакопленис, характер биоценозов, гидрологические условия и др. Взаимодействие этих факторов приводит к накоплению в отложениях водоемов суши и в морских условиях ОВ с различным сочетанием компонентов гумусовой и сапропелевой природы. [c.40]

    Стальные металлоконструкции, эксплуатирующиеся в морских условиях (например, морские сооружения) также подвергаются металлопескоструйкой, дробеструйной, гидропескоструйной обработке или травлению (листы судовой стали, отдельные элементы морских сооружений). Если перечисленные методы обработки поверхности использовать невоздюжно, поверхность обрабатывают механизированным инструментом или вручную стальными щетками и скребками. Листовой и профильный материал из черного металла после травления или ыеталлопескоструй-ной обработки фосфатируют, а листы и профильный материал из алюминиевых сплавов оксидируют химическим или электрохимическим способом (анодирование). [c.24]

    Постоянство элементарного состава нефти. Нефть, несомненно, образовалась из органического материала морского происхождения. Основные компоненты такого материала—молекулы с углеродным скелетом, которые содержат водород и кислород и в малых количествах азот, серу, фосфор и другие элементы. Мы знаем, что нефть под землей подвергалась в течение долгих лет действию растворов солей (грунтовых вод) и мелкораздробленных неорганических веществ при повышенных давлениях и температурах. Так как во время образования нефтп условия были анаэробные, то кислород медленно, но верно поглощался. Кроме того, молекулы, обладающие большей кинетической активностью, имели наибольшие шансы быть удаленными. Так как вообще посторонние атомы обладают большей кинетической активностью, чем углерод и водород, совершенно очевидно, что в материнском веществе сохранились главным образом углеводороды, так как длительное присутствие больших количеств весьма активных молекул в условиях залегания материнского вещества нефти невероятно. Элементарный состав углеводородов всегда довольно постоянен. Таким образом, изучение вопросов происхождения нефти приводит к разумному объяснению удивительного постоянства элементарного состава нефтей различных месторождений. [c.70]

    Для испытания прочности окрашенный материал подвергается двум родам воздействия. К испытаниям первого рода относятся испытания прочности окрашенного материала в условиях дальнейших его обработок, например для хлопка — бучения, мерсеризации, беления и отделочных операций, а для шерсти и шелка — в условиях трения, мокрой декатировки, удаления клея, окуривания, карбонизации и декатировки. Ко второму роду относятся испытания, которым подвергается уже готовый материал, например испытания прочности к мытью, стирке, морской воде, свету, поту, трению и утюжке. Некоторые официальные стандартные методы испытания этих прочностей, предложенные ААТСС, приводятся далее лишь в общих чертах. [c.347]

    Из приведенных данных видно, что плакированный материал в условиях, моделирующих промышленные и морские, подвержен сильной коррозии. В этих же условиях, особенно в морских, химическое оксидирование также не обеспечивает защиту. Значительно более высокими защитными свойствами обладают покрытия, полу-ченн-ые анодным окислением. [c.99]

    Тнтан и его сплавы находят все большее применение в совре-мен.чом машиностроении, авиастроении, судостроении, турбостроении, в производстве вооружения. Особенно ценен титан как материал для изготовления частей конструкций, работающих в напряженных условиях. Критерием пригодности таких материалов является отиошение их прочности к весу. Титан и его сплавы используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, они тнироко применяются для изготовления деталей самолетов, космических аппаратов, ракет, трубопроводов, котлоз высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. Одной из наиболее перспективных областей применения титана является судостроение, где решающее значение имеет высокая прочность нри малой плотности и высокая стойкость к коррозии и эрозии в морской воде. Сущестг енное значение имеет использование титана в виде листов для обшивки корпусов судов, литых деталей из титана, выдерживаюнтих длительное пребывание в морской воде, а также для покрытия изнутри смесительных барабанов, предназначенных для перемешивания агрессивных материалов и для других це.тен. В связи с дороговизной листового титана большой практический интерес для судостроительной, химической и других отраслей промышленности представляет применение титана в качестве плакировочного материала для изготовления биметаллических стальных листов. [c.274]

    Так как в ассортименте эпоксидных лакокрасочных материалов, вьшускаемых химической промышленностью, нет апециальных эмалей для защиты стальной поверхности в морских условиях, необходимо было разработать покрытие иа основе этого стойкого полимерного материала применительно к морским условиям. [c.313]

    Межкристаллитной коррозии могут подвергаться некоторые типы нержавеющей стали, имеющие высокое содержание углерода (0,05-3,15 % С). Она может иметь место, если нержавеющая сталь подвергалась термообработке, так что на границах зерен выпали карбиды хрома, а затем материал оказался подвержен воздействию кислого раствора или морской воды. Механизм реакции показан на рис. 105. Выпадение карбидов хрома имеет место только при определеных условиях для аустенитной стали преимущественно при 550-850 С. В этом случае говорят, что сталь сенсибилизирована. В результате выпадения карбида тонкий слой вблизи границы зерна настолько обедняется хромом, что сталь теряет свой нержавеющий характер. Сенсибилизация может оказаться результатом не только термообработки, но и сварки (см. 8.2) (рис. 106). При воздействии коррозивной среды зоны, обедненные хромом, совместно с остальной [c.115]

    К смазкам на смешанных мыльных загустителях относится смазка МС-70, представляющая собой масло МВП, загущенное 5% алюминиевого мыла, 10% стеарата бария и 5% церезина, т. е. масляная основа загущена и мылами и твердыми углеводородами. Смазку применяют в качестве защитно-антифрикционного смазочного материала в условиях постоянного контакта с морской или речной водой. Способностью выдерживать повышенные нагрузки отличаются натриево-свинцовые и церези-но-свинцовые смазки. [c.147]

    Большое значение имеет вопрос о продолжительности испытания. Это зависит от назначения материала в условиях эксплоатации. Так например, Борнгем утверждает, что шатуны на морских пароходах дальнего плавания могут выйти из строя после 10 циклов и предлагает проводить испытания на усталость при 10 циклах. [c.619]

    В расчетах на прочность технологической аппаратуры конструктору часто приходится учитывать общую равномерную по поверхности коррозию металлов и сплавов, для чего необходимо знать проницаемость материала в мм/год при заданных рабочих условиях агрессивной среды (концентрация, температура, давление). Она учитывается при выборе величины прибавки на коррозию к рассчитанной толщине стенки аппарата. В ряде случаев при конструировании технологической аппаратуры необходимо учитывать также и другие виды коррозионного разрушения материалов. Например, в химических аппаратах, выполненных из кислотостойкой стали и находящихся под постоянным повышенным давлением, при совместном действии коррозионной среды и растягивающих напряжений в ряде случаев наблюдается коррозионное растрескивание металла, происходящее обычно внезапно без видимых изменений материала, Это явление не имеет места при наличии в металле напряжений сжатия. Кроме того, коррозионное растрескивание происходит в небольшом количестве агрессивных сред и зависит от величины давления и температуры, Известно, что ускоренное растрескивание аппаратуры из кислостойких сталей, находящейся под постоянно действующей нафузкой, имеет место в растворах Na I, Mg l,, 7,т)С , Ь1С1, Н 8, морской воде и т,д. Латуни обнаруживают склонность к коррозионному растрескиванию в среде аммиака. [c.9]

    Алюминиевая бронза, содержащая > 8 % А1, имеет очень хорошие прочностные характеристики и хорошую коррозионную стойкость при условии, что сплав не содержит богатой алюминием "у-фазы, которая очень чувствительна к селективному коррозионному деалюминирова-нию. Чтобы понизить опасность возникновения -( -фазы, следует обеспечивать подходящие условия термообработки и сварки материала. Опасность можно понизить также, вводя в сплав добавки никеля, железа и марганца. Никельалюминиевая бронза является прочным и коррозионностойким материалом, который хорошо зарекомендовал себя для морских применений, например судовых винтов, кранов и трубных досок в теплообменниках. [c.137]

    Крупные потребители, нанример для сооружений в прибрежном щельфе, иногда предписывают минимальные значения стационарного потенциала или коэффициента аз для алюминиевых протекторов. По определению токоотдачи (выхода по току) протекторных материалов нет единого мнения. Обычно испытание ведется по способу гальваностати-ческой выдержи [33], т. е. с наложением заданного тока в искусственной (модельной) морской воде, или при длительном свободном протекании проточной естественной морской воды [34]. Способы исследований имеют тот недостаток, что образцы протекторов приходится вытачивать из сплошного материала. В таком случае остается неучтенным влияние литейной корки, поведение которой (в особенности у алюминиевых протекторов) может существенно отличаться от поведения материала сердцевины. Наряду с вопросом о воспроизводимости свойств материала образца встает вопрос и о способе проведения испытания, т. е. о выборе числа протекторов и их расположения в сосуде для испытаний. В частности, не исключено, что распределение тока и движение или обмен среды могут влиять на поляризацию. Поэтому при современном уровне исследований в любом случае можно получить только сравнительные показатели, которые нельзя приравнивать к показателям, получаемым в практических условиях. В общем пока еще не имеется обязательных инструкций по испытаниям. [c.196]

    Ферросилид представляет собой сплав железа с 14 % 81 и 1 % С. Он имеет плотность 7,0—7,2 г-см . При протекании анодного тока на поверхности формируются покрытия, содержащие кремнезем (двуокись кремния), которые затрудняют анодное растворение железа и способствуют образованию кислорода по реакции (8.1). В морской и солоноватой воде образование поверхностного слоя на ферросилиде оказывается недостаточным. Для улучшения стойкости при работе в соленых водах в сплав добавляют около 5 % Сг, 1 % Мп и (или) 1—3 % Мо. Ферросилидовые анодные заземлители ведут себя в воде с большим содержанием хлоридов хуже, чем графит, потому что ионы хлора разрушают пассивное покрытие на поверхности этого сплава. Поэтому предпочтительными областями применения таких сплавов являются грунт, солоноватая и пресная вода. Средняя допустимая токовая нагрузка составляет 10—50 А-м-2, причем потеря от коррозии в зависимости от условий эксплуатации не превышает 0,25 кг-Д- -год-. Ввиду малости коррозионных потерь материала ферросилидовые анодные заземлители нередко укладывают непосредственно в грунт [6] необходимо позаботиться об отводе образующихся газов, потому что иначе сопротивление растеканию тока с анодов получится слишком большим [7]. [c.202]

    Компактную (цельную) платину как материал для анодов на станциях катодной защиты предложил Коттон [14]. Такие аноды при подходящих условиях могут работать с плотностью анодного тока до Ю" А-м-2. Действующее напряжение практически не ограничивается, а скорость коррозии (в предположении об оптимальности условий) очень мала — порядка нескольких миллиграммов на 1 А в год. Впрочем, это обеспечивается преимущественно при сравнительно низких плотностях тока в морской воде прн эффективном отводе образующейся подхлор-ной кислоты. Если приходится применять благородные материалы для получения высоких плотностей анодного тока в плохо проводящих электролитах, то анодное растворение платины увеличивается вследствие образования хлорокомплексов и в таком случае становится непосредственно зависящим от плотности тока [15—17]. Кроме того, в воде с низким содержанием хлоридов при преобладании образования кислорода на поверхностях анодов образуется предпочтительно легче растворимый окисел РЮг вместо РЮ, вследствие чего расход платины тоже увеличивается. Тем не менее потери остаются малыми, так что цельная платина может практически считаться идеальным материалом для анодов. Однако такие аноды ввиду большой плотности платины (21, 45 г см-2) получаются очень тяжелыми, а ввиду весьма высоких цен на платину (28 марок ФРГ за 1 г по состоянию на сентябрь 1979 г.) они неэкономичны. Вместо них применяют аноды из других несущих металлов, рабочая поверхность которых покрыта платиной. [c.204]

    V Сопротивление сТали коррозионной усталости зависит и от формы цикла (от закономерности, по которой изменяются напряжение и деформации при циклическом нагружении). Форма цикла определяется условиями эксплуатащш деталей и конструкций и бывает различной синусоидальной, пилообразной, трапецеидальной и прямоугольной. Цикл нагружения может быть как симметричным, так и асимметричным. Форма цикла влияет на процессы упрочнения металла в зоне перед вершиной трещины (зона предразрушения), а также на процессы накопле-Ш1я искажений кристаллической решетки, отдыха и перераспределения там напряжений. Кроме того, форма цикла, определяя скорость деформирования, а также время пребывания материала в деформированном состоянии, влияет на электрохимические (коррозия и наводороживание) процессы в трещине. При малоцикловом нагружении в синтетической морской воде и других средах наименьшая долговечность наблюдается для синусоидальной формы цикла при переходе к трапецеидальной форме, а затем к прямоугольной долговечность металла несколько возрастает. Отмечено, что форма цикла сказывается на сопротивлении усталости также при многоцикловом усталостном нагружении, однако в условиях малоцикловой усталости это влияние проявляется сильнее [21,71,72]. [c.51]


Смотреть страницы где упоминается термин Материалы для морских условий: [c.32]    [c.156]    [c.474]    [c.156]    [c.179]    [c.360]    [c.315]    [c.63]    [c.230]   
Смотреть главы в:

Коррозия пассивность и защита металлов -> Материалы для морских условий




ПОИСК







© 2025 chem21.info Реклама на сайте