Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьмы руды селеном

    Помимо меди, кремния и кислорода, в медных рудах может присутствовать много других элементов, наиболее важными из которых являются цинк, свинец, мышьяк, сурьма, висмут, селен, теллур, никель, кобальт и благородные металлы примесями меньшего значения являются кальций, магний, алюминий, барий, натрий, калий, марганец, литий, фтор, титан, уран, ванадий, олово и молибден. Все эти элементы в какой-то степени удаляются в последовательных операциях обжига, плавки и конвертирования. [c.133]


    Медь, получаемая из сульфидных руд пирометаллургическим способом, содержит около 1 % примесей — таких, как никель, сурьма, свинец, теллур, селен, висмут, мышьяк, сера, золото, серебро, а в ряде случаев и металлы платиновой группы. Наличие в меди даже небольших количеств примесей сильно понижает ее физические свойства (например, электрическую проводимость, пластичность и др.). Для получения меди высокой чистоты из пирометаллургической меди и попутного извлечения из нее благородных металлов в продукт, удобный для дальнейшей переработки, ее подвергают электрохимическому рафинированию. В настоящее время около 90 % всей добываемой меди обрабатывают таким образом. [c.120]

    Свинцовые руды, как правило, комплексны. Главные спутники свинца — цинк и серебро. В промышленно значимых концентрациях частично присутствует медь. Встречаются также золото, висмут, сурьма, мышьяк, кадмий, олово, галлий, таллий, индий, германий, иногда селен и теллур. [c.133]

    При помощи диаминобензидина определяют селен в меди [7, 8, 29], стали ]29, 30], свинце [8], теллуридах сурьмы и висмута ]31], теллуре и его соединениях [13, 14], силикатах [17], почвах [32], сульфидных рудах [33], серной кислоте [34], растительных тканях [35], биологическом материале [3, 20, 28, 36], органических веществах ]37], воде [17, 38], воздухе ]39]. [c.348]

    Гипофосфитный метод предложен для определения мышьяка в свинце, применяемом для изготовления аккумуляторных батарей [146], в минеральном сырье [147], в вольфрамовых рудах и концентратах [148] и в металлической сурьме, содержащей селен и теллур [149]. Селен и теллур предварительно выделяют в более мягких условиях хлоридом олова(II), а затем гипофосфитом выделяют мышьяк в присутствии сульфата меди в качестве катализатора. [c.168]

    Броматометрическое титрование рекомендовано для определения мышьяка в рудах, концентратах и минералах [356, 1047], в сплавах с висмутом и селеном 1342], в селеномышьякопых продуктах [266], в сталях, сплавах и рудах, содержащих сурьму [987], черновом свинце [182], полупроводниковых соединениях бора с мышьяком [340], арсениде галлия [1083], инсектицидах [1080], металлах, растворимых в кислотах [988], растворах солей железа [96], продуктах, содержащих платиновые металлы [219]. [c.43]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]


    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Метод дуги постоянного тока использован для определения галлия в различных породах и минералах [81, 87, 174, 429, 666, 823, 873, 883, 974, 977, 1113, 1114, 1151, 1183, 1192, 1319, 1418], глинах [907, 1183], в почвах [1013], в бокситах [989, 1183], в рудах и продуктах их обогащения [56, 429, 1113, 1114, 1151, 1418], в отходах цветной металлургии [56], в ZnS [885], в золах и сланцах [1184], в огнеупорах [1183], в водах i[1325], в органичесиих соединениях [400], в HF, HNO3 и НС1 [105], в цинк-селенидных электролюминофорах [515], в сплаве In—Ga [1147], в боре (борный ангидрид, борная кислота) [75], графите [850, 929], кремнии [106, 107, 427, 1134] и его соединениях [106, 107, 397, 1134], в германии (108, 336, 336а] и его соединениях [108], в индии [88, 381], цинке [555], олове [557, 559, 560], сурьме [466], бериллии и его окиси [242], селене [506], щелочных металлах [542] и уране [730]. [c.158]

    Прекрасным методом предварительного отделгиия мышьяка, встречающегося в малых количествах во многих материалах, является осаждение его аммиаком в виде основного арсената железа. Этот метод применяется при анализе медных и молибденовых руд. В этих случаях разложение исходного материала ведут так, чтобы весь мышьяк получился в пятивалентной форме, затем прибавляют 0,1—0,2 г соли железа (III) (если последнее не присутствует уже в растворе в достаточном количестве) на каждые 10 мг мышьяка и осаждают, как указано в гл. Молибден (стр. 360). Ряд других элементов селен, теллур, фосфор, вольфрам, ванадий, олово и сурьма — также осаждается этим методом. Применение соли алюминия вместо соли железа (III) не дает таких удовлетворительных результатов. [c.308]

    Платиновые металлы встречаются в природе также в виде соединений с мышьяком, серой, сурьмой и, возможно, с селеном. Считают, что в рудах Садбери, имеющих промышленное значение, платина содержится в виде арсенида Р1Аз2, известного под названием сперрилита, а палладий, сопровождающий платину в этих рудах почти в равных [c.395]

    Для металлургии редких металлов чрезвычайно важна комплексная переработка сырья, являющаяся необходимой предпосылкой дальнейшего развития промышленности редких металлов. В Программе Коммунистической партии Советского Союза, принятой ХХИ съездом, говорится Особенно ускорится производство легких, цветных и редких металлов.., . Одной из главных задач в области науки Программа считает совершенствование существующих и изыскание новых, более эффективных методов разведки полезных ископаемых и комплексного использования природных богатств . Это особенно важно для развития промышленности редких металлов, так как полиметаллические руды, главной составной частью которых являются цинк и свинец, часто содержат также (кроме сурьмы и мышьяка) кадмий, таллий, галлий, индий, германий, которые концентрируются в отходах производства свинцовых и цинковых заводов. Эти отходы являются, таким образом, исходным сырьем для получения целого ряда ценных элементов. Пыли и илы сернокислотного прозводства могут содержать селен, теллур, таллий. Шлаки черной металлургии могут служить источником получения ванадия и титана. Золы некоторых углей и сланцев содержат значительные количества германия, ванадия, иногда молибдена, галлия, циркония, редких земель и других элементов. В Калийных солях обнаруживаются рубидий, цезий, в глиноземном сырье — галлий, индий и т. д. [c.20]


    Экстракционный комплексонный метод отделения урана. После разлолсения руды подходящим способом к раствору прибавляют аммиак и комплексон III, после чего уран экстрагируют хлороформом, диэтиловым эфиром, амиловым спиртом, этилацетатом или амилацетатом из нейтрального раствора. Бериллий, сурьма, титан и отчасти марганец при этом не образуют прочных комплексов и при нейтрализации выпадают в осадок. Вместе с ураном экстрагируются медь, серебро, висмут, ртуть, таллий, мышьяк, селен и теллур. В присутствии комплексона III не экстрагируются железо, кобальт, никель, индий, галлий, свинец, ва- [c.318]

    Экстракция с помощью NaDD была применена для определения меди в никеле [549, 824], растворах солей никеля, кобальта и других металлов [481, 795], кадмии 359, 521, 615], цинке [359, 521, 1189], олове [411], титане и цирконии [1132], тантале [387 , селене и селениде кадмия [995, 1363[, теллуре [714], хро.ме [1139] и сурьме высокой чистоты [811] и других металлах [798, 1431]. Этот метод был использован также для определения меди в сплавах [647], рудах [795], едких щелочах [470, 1409], щелочных металлах высокой чистоты [117], поваренной соли [1537], иодиде натрия [1219], воде [469, 718, 1014], почвах [171], красном фосфоре [1469], растениях [303] и других биологических материалах [515]. [c.235]

    По химическому составу минералы мышьяка делятся на сульфиды, простые и сложные (арсенопирит), окислы и арсенаты. Промышленное значение имеют сульфиды, главным образом арсенопирит, и в меньшей степени реальгар и аурипигмент (см. табл. 4). Собственно мышьяковые руды делятся на три типа 1) реальгаро-аурипигментные руды, в которых мышьяк представлен реальгаром и аурипигментом в таких рудах мышьяку сопутствуют селен, сурьма, иногда ртуть вмещающими породами являются сланцы и песчаники 2) арсенопиритные руды, в которых наряду с арсено-пиритом имеются пирит, пирротин, иногда в незначительных количествах минералы цинка, свинца, меди, висмута, кобальта и никеля вмещающая порода — кварц, серицит, барит и др. 3) золотомышьяковые руды, в которых преобладают арсенопирит и золотоносный пирит имеются и минералы свинца, цинка, меди. [c.115]

    При выборе кислоты необходимо принимать во виимаипе следующее селен и теллур, содержащиеся в окисленных сурьмяных рудах, нельзя перевести в раствор количественно при кислотной обработке. Селенид ртути, содержащийся иногда в значительном количестве в пыли свинцо-воциикового производства, растворяется лишь в смеси концентрированных НС1 и HN0.3. При выпаривании с азотной кислотой растворов, содержащих наряду с Se и Те сурьму или олово, осадок метасурьмяной или метаоловянной кислот увлекает значительное количество селена и теллу- [c.582]

    Платиновые металлы встречаются в природе также в виде соединений с мышьяком, серой, сурьмой и, возмол<но, с селеном. Считают, что в рудах Садбери, имеющих промышленное значение, платина содержится в виде арсенида PtAs. , известного под названием сиеррилита, а палладий, сопровождающий платину в этих рудах почти в равных количествах, как предполагают, находится в виде селенида. Известно два природных сульфида платины—к у и е р и т PtS и браггит (Pt, Pd, Ni)S. С т и - [c.361]


Смотреть страницы где упоминается термин Сурьмы руды селеном: [c.485]    [c.232]    [c.165]    [c.71]   
Аналитическая химия сурьмы (1978) -- [ c.15 ]




ПОИСК







© 2025 chem21.info Реклама на сайте