Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо арсенат

    По названиям солей составьте их формулы 1) арсенат калия, арсенит калия, метаарсенит калия 2) гидроксохлорид магния, сульфат железа (III), гидросульфат железа (II). [c.40]

    Некоторые другие анионы (фторид-, тартрат-, арсенат-, ацетат-ионы) также связывают железо в менее диссоциированные соединения. [c.256]

    Гидролитический метод осаждения. Осаждение гидрата окиси таллия (111) из сернокислых растворов (при малой концентрации таллия) происходит в пределах pH от 2 до 4 (см. рис.39). При еще более низком pH осаждается арсенат таллия (III). Так как железо (III) осаждается примерно в том же интервале pH, перед гидролитическим осаждением таллия необходимо очистить раствор от [c.349]


    Потеря таллия с осадком обусловлена адсорбцией на основных сульфатах, гидроокисях, арсенатах и арсенитах железа и меди, причем степень адсорбции увеличивается с повышением pH и понижением температуры [200]. Раньше для окисления железа пользовались марганцовой рудой (пиролюзитом). Это нежелательно, так как двуокись марганца частично окисляет таллий, вызывая большие потери. [c.351]

    Если исследуют металлический никель, то после его растворе-иия окисляют примесь железа (II) до железа (III) и добавлением винной кислоты связывают железо (III) в тартратный комплекс. Осаждению никеля в виде диметилглиоксимата мешают катионы железа, меди, алюминия, а также фосфат-, арсенат-, борат-, окса-лат-ионы. [c.311]

    Железа оксиды с примесью фтор- или марганецсодержащих соединений (от 3 до 6 %) Железорудные окатыши Железный агломерат Зола горючих сланцев Кальция арсенат [c.77]

    Алюминиевые сосуды пригодны также для препаратов, в малых концентрациях содержащих сернокислое железо, арсенат свинца, медный купорос. [c.538]

    Из арсенатов Fe, Си, Zn и d при одном и том же значении pH наименее растворим арсенат железа. Растворимость гидроокисей этих металлов больше растворимостей их арсенатов этим можно воспользоваться для выделения мышьяка из растворов при помощи соответствующих гидроокисей. Из растворов, содержащих, наряду с мышьяком, сульфаты цинка, кадмия и другие, можно селективно выделить мышьяк, осаждая его при низких pH в форме арсената железа Ниже приведены произведения растворимости некоторых арсенатов при 20° [c.652]

    Карбонаты и органические вещества, кроме карбонатов щелочных металлов Многие сульфиды и тиосульфаты Хлориды железа, меди, золота, платины и др. Арсениты и арсенаты в присутствии органических веществ Иодиды в присутствии окислителей Органические соединения [c.270]

    Нерастворимы в воде все гидроокиси, цианиды, гексацианоферраты (И) и (HI), сульфиды, сульфиты, карбонаты, оксалаты, фосфаты, арсенаты, арсениты, силикаты и хроматы (кроме хроматов цинка, алюминия, марганца и железа). [c.242]

    Запишите формулы нижеперечисленных веществ, пользуясь сведениями о ионных зарядах из табл. 3.1 хлорид калия, оксид меди(1), бромид мышьяка, сульфат олова(П), нитрат железа(1П), силикат алюминия, фосфат аммония, гидроксид магния, арсенат меди(П), нитрид кальция. [c.53]

    Введение избытка роданида обеспечивает образование роданидного комплекса железа даже при большом содержании хлоридов. Кроме того, определению железа мешают фториды, фосфаты, арсенаты и тартраты, ослабляющие окраску даже в кислой среде. При небольшой кислотности раствора сильное влияние оказывают также сульфат- и ацетат-ионы. Из восстановителей, мешающих определению железа, следует отметить сульфид-, сульфит-, иодид-ионы и др., а из окислителей — перманганат, перекись водорода, нитрит, медь, концентрированную азотную кислоту и др. В присутствии азотистой кислоты роданид образует окрашенные соединения даже без железа. Роданид аммония часто содержит некоторое количество тиомочевины последняя восстанавливает железо до двухвалентного. Поэтому лучше пользоваться роданидом калия. [c.122]


    Аз, 5, часть 51, щелочные металлы. Если содержание фосфора и мышьяка выше допустимого, то их отделяют, добавляя соли железа. Осадки гидроокисей железа окклюдируют фосфат и арсенат железа. Для полного осаждения фосфора и мышьяка требуется до трехкратного избытка соли железа против теоретически необходимого. Ионы 804 " и щелочные металлы отделяют НИИ молибдата кальция. [c.209]

    Для этого к насыщенному раствору добавляют раствор солей железа и доводят раствор до слабощелочной реакции, добавляя суспензию гидроокиси магния или раствор соды. При этом выпадают нерастворимые арсенаты и арсениты железа. Из аппарата второй ступени нейтрализации 16 сусиензия подается в фильтрпресс 17, откуда осадок направляется в отвал. [c.231]

    Загрязнения осадка железом можно избежать, если его предварительно восстанавливать при помощи сернистой кислоты. Для нейтрализации образующейся при этохМ минеральной кислоты вводят ацетат аммония. Отделение урана осаждением арсенатами не нашло практического применения вследствие большого числа мешающих элементов. Этот недостаток Н. И. Удальцова (1958 г.) сумела устранить применением комплексона III в качестве маскирующего средства. [c.281]

    Выполненные нами исследования приводят к следующим представлениям о механизме протекания процесса. При контакте минералов с раствором едкого натра гидроксил-ионы, обладая высо-ВДм химическим сродством к ионам железа, адсорбируются на их Поверхности и образуют с изучаемыми сульфидами адсорбированный комплекс. В условиях электрохимического окисления вследствие смещения потенциала минералов в положительную сторону связь иона ОН с ионом железа упрочняется, достигая прочности вязи в гидроксиде железа Ре (ОН) 2, являющемся начальным продуктом процесса. В щелочной среде в присутствии кислорода "е(0Н)2 быстро окисляется до Ре(ОН)з, а затем переходит в бо-устойчивое соединение — РегОз. В конечной стадии окисление Минералов завершается образованием в основном оксида железа сульфата натрия и арсената натрия. [c.79]

    Иодометрически можно определять как восстановители, так и окислители. Из восстановителей иодометрически чаще всего определяют сульфиды, сульфиты, арсениты, нитриты, ртуть (I), сурьму (И1), цианиды, роданиды, олово (И), из окислителей — перекись водорода и другие перекиси, медь (И), железо (П1), двуокись марганца, гек-сацианоферрнат-ион 1Ре(СЫ)б , галогены (свободные), хлораты, броматы, иодаты, хроматы, перманганаты, арсенаты, гипохлориты. Все они выделяют из раствора иодида калия свободной иод, который можно оттитровать тиосульфатом натрия. [c.405]

    Определению молибдена ( 0,25 г) не мешают 0,25 г ионов фосфата или арсената, 5 г солей аммония. Железо следует отделить осаждением в виде гидроокиси при помощи аммиака. [c.191]

    Косвенные методы. Для определения мышьяка с неорганическими реагентами предложен ряд косвенных методов. По одному из них [587] предложено окислять арсенит до арсената избытком K3[Fe( N)e] и разлагать образовавшийся K4[Fe( N)el при pH 3,5 с помощью хлорида ртути(И), а образующееся в эквивалентном количестве железо(П) определять фотометрическим методом с применением 1,10-фенантролина в качестве реагента. [c.65]

    Среди других физико-химических методов определения мышьяка можно упомянуть кинетические методы [110, 252, 479]. По одному из них [252] микроколичества мышьяка определяют по реакции восстановления ионов серебра железом(П), катализируемой арсенат-ионами. В другом методе [479] используют каталитическое действие арсената на реакцию окисления иодида перекисью водорода. Этот метод применен для определения мышьяка в фосфоре. Чувствительность метода 10 нг As в 15 мл раствора. [c.91]

    Известны и другие группы минералов редких металлов (сульфаты, гидроокиси, арсенаты, фосфаты и др.). В рудах редких металлов встречаются окислы и гидроокиси железа, алюминия карбонаты и силикаты кальция, магния, железа и Многие другие соединения. Минералами пустой породы являются в основном кварц, флюорит, полевые шпаты, слюда и др. [c.25]

    Способы получения. Получение чистого кобальта довольно затруднительно. Для выделения чистого металлического кобальта обычно используются его мышьяковистые руды, которые обжигом при доступе воздуха сначала переводят в смесь оксидов и арсенатов. Полученную смесь растворяют в соляной кислоте, затем осаждают сероводородом сульфиды меди, висмута и других металлов, а остаток окисляют хлором. К окисленному остатку прибавляют карбонат кальция, который вызывает осаждение гидроксида железа и арсената кальция. Выпавший осадок отфильтровывают. К фильтрату прибавляют точно необходимое количество хлорной извести для образования осадка черного оксида С02О3 (НзО) . Большая часть никеля при этом остается в растворе. Во время процесса следят за тем, чтобы не было добавлено избытка хлорной извести. Полученный оксид кобальта (П1) восстанавливают водородом и растворяют в кислотах. Электролизом полученных при этом солей кобальта выделяют химически чистый металл. Особенно чистый кобальт получают электролизом раствора сульфата кобальта, к которому прибавляют сульфат аммония и аммиак. [c.370]


    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Осаждение в виде арсената. Описанный гидролитический метод непригоден для переработки материалов со значительным содержанием мышьяка, например пылей свинцовой плавки. В процессе нейтрализации индиевых растворов в присутствии мышьяка индий начинает осаждаться при значительно более низком pH. Как видно на рис. 67, особенно сильно сказывается присутствие мышьяка (V). В этом случае вместо основного сульфата или гидроокиси индия в осадок выделяется основной арсенат состава бГпаОз-ЗАзаОб.хНгО. Осаждается арсенат в более узком интервале pH (от 2 до 3,4) по сравнению с гидроокисью [99]. Арсенаты цинка, кадмия, свинца, железа (И) осаждаются при более высоком pH. Арсенат железа (Н1) осаждается совместно с индием и даже раньше его, поэтому перед осаждением индия в виде арсената рекомендуется восстановить Ре(П1) в Ре(Н). На рис. 68 показана схема одного из вариантов арсенатного способа извлечения индия из возгонов [102]. [c.305]

    Метод полезен при изучении термических превращений многофазных технологических продуктов, например, руд и концентратов, подвергаемых окислительному обжигу. Он позволил объяснить причины противоречий трактовки разными исследователями механизма окисления золото- и серебросодержащнх минеральных сульфидов, показав, что последовательность образования соединений, их устойчивость и направление протекающих реакций зависят не только от температуры, но и от содержания кислорода в газовой фазе на границе раздела твердое — газ (В. Н. Смагунов). Зафиксировано образование при окислении арсенопирита РеАзЗ нескольких модификаций арсенатов железа, выявлены условия существенного ухудшения механической структуры огарков, влияющей на последующее в1ыщелачивание из них золота и серебра, вследствие образования при обжиге жидких фаз (эвтектика пирротин Ре, ж8 — арсенат железа, система 5Ь28з—ЗЬгОз металлический свииец и др.). Выявлены многочисленные продукты взаимодействия золота и серебра с рудными компонентами в процессе обжига. Именно высокотемпературная рентгенография дала возможность обнаружить в продуктах обжига более десяти соединений золота и серебра, образование которых ранее не фиксировалось. Такие сведения необходимы для оптимизации технологии переработки исходных концентратов. [c.203]

    Окрашенными соединениями являются все соли катионов III аналитической группы, образуемые кислотами с окрашенными анионами все соли трехвалентного хрома — зеленые или фиолетовые, соединения шестивалентного хрома (хроматы) — желтые, бихроматы — оранжевого цвета соли никеля — зеленые кобальта — красные соединения марганца двухвалентного — розовые, четырехвалентного — черно-бурые, шестивалентного (манганаты) — зеленые, семивалентного (перманганаты) — красно-фиолетовые. Ацетат железа (III) — коричневочайного цвета, арсенат железа (III) —зеленый, бромид железа (И) — красный, хлорид железа (111) — коричнево-желтый, гексацианоферрат (II) железа — берлинская лазурь и гексацианоферрат (111) железа — турнбулена синь и роданид кобальта — синие роданид железа (111) — красный. [c.242]

    III) раствором бихромата калия с применением дифениламинсуль-фоновой кислоты в качестве индикатора. Титрование и само восстановление проводят в атмосфере инертного газа. Для получения более точных результатов вводят поправку на добавленное железо и индикатор. Определению не мешают фосфаты, арсенаты, висмут и малые количества нитратов. [c.102]

    Применение арсенатов, количественно осаждающих уран ( 1) из слабокислых растворов в виде двойных арсенатов UO2NH4ASO4 или UO2KASO4 [677], позволяет отделять его от редкоземельных элементов, алюминия, щелочноземельных элементов и от малых количеств железа. Zr, Tli, Ti, Ag, Pb и ряд других элементов мешают от делению урана. [c.280]

    Бывают ЗЮг и PbS04. pH фильтрата доводят до 1 прибавлением NH4OH и восстанавливают трехвалентное железо насыщенным раствором тиосульфата (прибавляемым до обесцвечивания раствора). При непродолжительном кипячении осаждаются сульфиды меди, висмута, сурьмы, серебра (и свинца). Прибавляют уротропин до pH 6 и недолго кипятят. Осадок, содержащий сульфиды, гидроокиси и арсенаты алюминия, галлия, индия и олова, быстро отфильтровывают с отсасыванием, промывают теплой водой, растворяют в НС1 с добавлением КСЮз, кипятят до удаления I2, раствор фильтруют [c.162]

    Определению указанных количеств молибдена не мешают примерно пятисоткратные количества Со, N1, Си, Са, Мд, Мп, 2п, Сг Мешают ванадат, вольфрамат, ионы ртути, кадмия, железа, вещества, окисляющие ионы иода, фосфаты, силикаты, арсенаты [384]. [c.243]

    Так, для отделения мышьяка от железа и медп рекомендуется [957] анализируемый раствор объемом около 40 мл, содержащий не более 100 мг отделяемых катионов и арсенат-ион, подкислить соляной кислотой до ее концентрации 0,3 М и пропускать со скоростью 5—10 мл мин через колонку диаметром 10 мм, содержащую 10 г катионита IR-100-AG в Н-форме (вместо этого катионита могут применяться катиониты КУ-1 и КУ-2). Колонку необходимо промыть 60 мл 0,1 М раствора НС1 и присоединить к фильтрату. Для регенерации колонки через нее пропускают 350 мл 2 М НС1 и промывают 200 мл воды. [c.132]

    Горюшиной и Арчаковой [387] разработан метод отделения бериллия в виде арсената ог алюминия (1 8), железа (1 15), меди (1 50), а также от Са, М , 2п, N1, Со, Мо, 2г и Т1 (в присутствии перекиси водорода) с использованием комплексона III. Фосфор не мешает при отношении ВеО Р2О5 =1 5. [c.156]

    Наряду с этим образуются сульфат железа, магнетит, арсенат железа (у арсеиопирита), но выход этих продуктов, по данны фазового анализа, составляет не более 2—5 %. [c.80]

    Известны и другие группы минералов редких металлов (с чьфаты, гидроокиси, арсенаты, фосфаты и др ) В рудах редких металлов встречаются окислы и гидроокиси железа, алюминия, карбонаты и силикаты кальция, магния, железа и Многие другие соединения Минералами пустой породы являются в основном кварц, флюорит, полевые шпаты, слюда и др Различают первичные месторождения и россыпи Россыпями называют месторождения, образовавшиеся в результате разру- [c.25]

    Осаждению мешают не только осаждаемые реактивом катионы (палладий, золото), но и ионы железа, алюминия, титана и др., осаждаюш,иеся аммиаком в виде гидроокисей, так как осаждение ионов никеля завершается в аммиачной среде. Реак ции мешают также фосфаты, арсенаты. бораты, оксалаты и некоторые другие анионы. [c.306]

    Когда мышьяк присутствует в значительных количествах, его отделение можно провести осаждением в виде сульфида мышьяка, арсената железа, элементарного мышьяка, а также отгонкой в виде хлорида или арсина. Перечисленные методы, однако, мало пригодны для выделения микроколнчеств элемента. Более эффективны для этой цели экстракционные методы [1—3J. [c.279]

    Бензол или его гомологи, производйые втор- или трет-иют)-галоидалкилов Монометилмалеинат Реак I Проиилен Продукты алкили-рования Р а 3 л Метилакрилат, СОг 1ии с участием м Акролеин Ортофосфат железа. Выход 38—73% [710] 0 ж е н и е Рвз(Р04)2 (10%) на силикагеле 390 С. Выход более 90% [758] олекулярного кислорода Арсенат железа 380° С. Выход 78,4% [761]. См. также [762] [c.43]


Смотреть страницы где упоминается термин Железо арсенат: [c.200]    [c.200]    [c.627]    [c.47]    [c.497]    [c.401]    [c.96]    [c.659]    [c.201]    [c.136]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Арсенаты



© 2025 chem21.info Реклама на сайте