Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография виды основные

    Сущность хроматографии, ес физико-химические основы, история ее возникновения и развития, значение для науки и техники. Разновидности хроматографии. Виды хроматографии. Жидкостная и газовая хроматография, их отличительные особенности и области применения. Газовая хроматография как один из наиболее эффективных и -перспективных методов анализа и препаративного разделения сложных смесей. Варианты газовой хроматографии. Основные задачи газовой хроматографии. Предварительные сведения об аппаратуре, методике и примеры применения газовой хроматографии. Широкие и капиллярные колонки, заполненные и открытые. [c.296]


    Установлено [77], что парафины, выделенные из гидрогенизатов масляных фракций сернистых нефтей, состоят в основном из н-алканов в них практически отсутствует сера и не обнаружены ароматические углеводороды. Нафтеновые углеводороды представлены в виде конденсированных колец. В табл. 11 приведен химический состав парафина с температурой плавления 53—54 °С, определенный хроматографией в сочетании с масс-спектрометрией. Этот парафин содержал 57 углеводородов. [c.44]

    Таким образом, можно наметить четыре основных вида хроматографии со следующими условными сокращенными русскими и английскими названиями  [c.14]

    Уже сейчас комплексное применение газовой хроматографии в работах по подбору катализаторов значительно ускоряет изучение каталитических свойств твердых тел. Значение хроматографии в таких работах еще более возрастет в недалеком будущем, когда на ее основе будут созданы автоматически действующие приборы и установки для испытания и изучения катализаторов и, в частности, установки, непосредственно выдающие в обработанном виде основные кинетические и адсорбционные характеристики веществ. [c.16]

    В аналитической химии существуют методы разделения и методы определения. Основной задачей методов разделения является главным образом отделение мешающих компонентов или выделение определяемого компонента в виде, пригодном для количественного определения. Однако нередко определение интересующего компонента производится прямо в пробе без предварительного разделения. В некоторых случаях методы разделения и определения настолько тесно связаны между собой, что составили неразрывное целое. Представителем таких методов является газовая хроматография. В процессе хроматографирования смесь разделяется на компоненты, и количественно определяется содержание компонентов. Такие методы анализа иногда называют гибридными, подчеркивая тесную связь отделения и определения как характерную особенность. [c.13]

    Газо-жидкостная хроматография отличается от других видов распределительной хроматографии в основном тем, что в качестве подвижной фазы используется инертный газ (гелий, водород), а неподвижной фазой является жидкость, нанесенная на твердый носитель. Разделение смеси на индивидуальные вещества производится в колонке, заполненной порошком, например, кизельгуром, целитом, равномерно пропитанным небольшим количеством нелетучей жидкости, служащей неподвижной фазой. [c.267]

    Факторы, которые следует иметь в виду при изготовлении колонок для промышленных газовых хроматографов, в основном те же, что и для лабораторных приборов. Однако характер работы в промышленных условиях накладывает при выборе параметров колонки некоторые дополнительные ограничения. Причины, определяющие конструктивные особенности колонки, настолько переплетаются между собой, что их невозможно перечислить в порядке их значения. При окончательном выборе колонок необходимо иметь в виду следующие аспекты  [c.120]


    Процесс проводят в колбе Клайзена в атмосфере азота при остаточном давлении 10 мм рт. ст. В колбу загружают дифенилолпропан и гидроокись натрия в виде порошка (1% от количества дифенилолпропана). Температура в колбе постепенно повышается от 170 до 230 °С, при этом непрерывно отгоняются пары <температура их 70—145°С). Собранный дистиллят затем разгоняли в атмосфере азота при остаточном давлении 10 мм рт. ст. Сначала отбирали фенольную фракцию, а затем еще три 120—129 °С (т. пл. 66—71 °С), 129—134 °С (т. пл. 68—73 °С) п 134—145 С (т. пл. 78—82°С). Последняя фракция представляет собой наиболее чистый п-изопропенилфенол, однако и в ней содержатся примеси. Методом газо-жидкостной хроматографии во фракции было определено 90% основного вещества. [c.193]

    Классификация по признаку природы явлений, лежащих в основе разделения. Эту классификацию предложил Е. Н. Гапон. Он подразделяет хроматографию на три основных вида 1) адсорбционную 2) распределительную 3) осадочную. [c.12]

    Основной задачей теории хроматографии является выяснение механизмов разделения и описание движения компонентов смеси вдоль неподвижной фазы. Поскольку при хроматографии происходит непрерывное движение одной фазы относительно другой, между фазами не устанавливается равновесие. Однако при определенных условиях процесс хроматографирования можно рассматривать как равновесный, и тогда скорость перемещения вещества вдоль слоя сорбента имеет простую связь со скоростью потока элюента и градиентом адсорбции по концентрации. Основное уравнение равновесной хроматографии, записанное относительно линейной скорости и перемещения вещества вдоль колонки неподвижной фазы, имеет вид [c.348]

    Принципиальная схема газового хроматографа в самом общем виде представлена на рис. 15. Газ-носитель непрерывно продувает все части газовой схемы. Пробу анализируемого газа (если исследуемый образец — жидкость, то его с помощью специального испарительного устройства хроматографа переводят в парообразное состояние) вводят в поток с помощью устройства 2. Газ-носитель продвигает внесенную смесь через колонку 3 и детектор 4. Колонка — один нз основных частей прибора, поскольку в процессе движения в ней анализируемая смесь газов разделяется на компоненты. Разделенные компоненты образца, выходя из колонки, поступают в детектор, который обнаруживает их и выдает сигналы, обычно записываемые иа ленте регистратора 5. [c.61]

    Неподвижная фаза может быть твердым телом, обладающим адсорбционными свойствами (адсорбционная хроматография), или жидкостью, нанесенной для создания большей поверхности обмена на границе раздела фаз на гранулированный инертный материал — носитель (распределительная хроматография). Подвижная фаза может быть жидкостью, газом или паром. Соответственно, можно выделить четыре основных вида хроматографии жидкостно-адсорбционная, газо-адсорбционная, жидкостно-жидкостная и газожидкостная. Эта классификация была рекомендована и получила одобрение на Первом международном симпозиуме по газовой хроматографии, состоявшемся в 1956 г. в Лондоне. [c.13]

    Основным в газовой хроматографии остается классический элюентный способ с его многочисленными методическими и аппаратурными видоизменениями. Это наиболее старый и в то же время наиболее распространенный и универсальный способ. Этим способом разделяют не только газовые смеси, но и смеси любых жидких и даже твердых веществ, обладающих хотя бы незначительной упругостью пара при температуре разделительной колонки. При этом упругость пара должна быть достаточна, чтобы применяемый детектор мог четко зафиксировать разделяемые компоненты на выходе из колонки. Таким образом, термин газовая хроматография отнюдь не означает, что этот вид хроматографии применим лишь для анализа газовых смесей. Этот термин означает прежде всего то, что разделяемые компоненты смеси находятся в парообразном или газообразном состоянии, а подвижной фазой является газ-носитель, играющий роль проявителя. Температура кипения веществ, которые можно разделять методом газовой хроматографии, может колебаться в пределах от —200 до 400 С. [c.23]

    В большинстве курсов органической химии для сельскохозяйственных и некоторых биологических специальностей (обш,им объемом около 100 ч), как правило, половина времени отводится на лекции, четверть — на семинары и четверть — на практикумы. При таких объемах курсов очень трудно, да и нецелесообразно вводить в практикум синтетические задачи. Поэтому в настоящем практикуме наряду с приемами работ по органической химпи (перегонка, кристаллизация, различные виды хроматографии, определение физико-химических констант и т. д.) предусмотрены лишь качественные реакции на элементы, входяш,ие в состав органических веществ, и на основные функциональные группы. Такая аналитическая направленность кажется разумной и в связи с тем, что студенты упомянутых специальностей в последующей работе будут, как правило, сталкиваться в основном больше всего с идентификацией органических веществ. [c.3]

    В отличие от других хроматографических методов газовую хроматографию проводят почти исключительно на приборах, выпускаемых промышленностью. Для простоты рассмотрим основные части установки для проведения газовой хроматографии в виде блок-схемы (рис. 7.13). При помощи определенного устройства устанавливается необходимая скорость газа-носителя. Перед входом в верхнюю часть колонки пробу дозируют, если необходимо [c.363]


    Несмотря на то, что в основе этих методов лежит различный механизм взаимодействия молекул веществ с сорбентом, все эти виды хроматографии подчиняются одним закономерностям. Поэтому целесообразно вначале рассмотреть главные закономерности теории хроматографического разделения веществ и основные факторы, влияющие на разделение, а затем рассматривать отдельные методы хроматографического анализа веществ молекулярного характера, для удобства объединив их по технике выполнения. [c.13]

    Как и при других видах хроматографического анализа, возможность разделения в молекулярно-ситовой хроматографии можно охарактеризовать количественно степенью разрешения, которую определяют по уравнению зависимости разрешения от основных хроматографических параметров  [c.72]

Таблица 28.1. Основные виды хроматографии Таблица 28.1. <a href="/info/1553328">Основные виды</a> хроматографии
    Ионообменная хроматография — один из видов хроматографического анализа, основы которого были созданы в 1903— 1906 гг. Цветом первоначально с целью разделения пигментов группы хлорофилла. Современная хроматография — это метод разделения веществ (молекул или ионов), основанный на различиях в скорости переноса растворенных веществ в системе двух фаз, одна из которых подвижна компоненты перемещаются через систему только находясь в подвижной фазе, в направлении ее движения. Компоненты, распределяющиеся предпочтительно в неподвижной фазе, двигаются медленнее компонентов, находящихся в основном в подвижной фазе. Таким образом, различия в равновесном распределении компонентов между двумя фазами и в кинетике обмена обуславливают различия в линейных скоростях движения компонентов и в конечном счете ведут к их разделению. [c.686]

    Оборудование ЦЗЛ и ХАЛ зависит не только от средств, выделяемых на развитие аналитической службы, но и от типа технологического процесса, вида полупродуктов и готовой продукции. Основное оборудование — спектрографы, квантометры, хроматографы. В ряде производств используют также экстракционные, фотометрические, ионометрические, титриметрические методы и др. Так, на металлургических комбинатах, где полупродуктами и продуктами являются металлы и сплавы, до 75% анализов проводят спектральными методами на вакуумных и рентгеновских кванто-метрах и экспресс-анализаторах. [c.230]

    Наряду с адсорбционной, существуют и другие виды хроматографии ионообменная, распределительная, осадочная. Основные способы анализа — фронтальный, элюентный и вытеснительный. Все эти методы рассматриваются в специальных курсах. [c.178]

    В общей части книги (см. стр. 59—76) изложены основные дринцилы отделения примесей и выделения газа в чистом виде, основные предпосылки для выбора метода разделения, наполнителей колонок, параметров опыта и основные требования, Т1рвдъявляемые к препаративным колонкам. Там же приводятся методы работы и описание некоторых. конструкций нрепаратии ных хроматографов, прибора ХЛ-2, который может быть приспособлен для препаративных целей. [c.97]

    Аналитические методы определения летучих примесей сравнительно хорошо разработаны многими исследователями [3]. Основной причиной этого является относительная легкость, с которой летучие органические вещества отделяются от водной среды, например, с помощью жидкостной экстракции или при продувании газом [4]. Концентрирование и отделение нелетучих органических примесей, присутствующих в микрограммо-вых количествах в виде сложных смесей в водных растворах, более трудоемко и сложно. Для концентрирования нелетучих органических веществ в водных пробах используют адсорбцию [5], вымораживание [6], обратный осмос [7], вакуумную дистилляцию [8]. Жидкостная хроматография является основным методом анализа нелетучих органических веществ [3, 4, 8] вследствие успешного разделения сложных смесей этим методом. [c.128]

    Для определения органических веществ в сточных водах применяют и фотометрические, и титриметрические методы, но особенно большую роль играют методы определения суммарных показателей загрязнения вод , подробно описанные в разд. 5 настоящего руководства, и все виды хроматографичес ких методов. Хроматография стала основным методом раздельного определения органических веществ. [c.18]

    Метанольные экстракты кожи различных видов Phyllomedusa и Rana содержат три биологически активных пептида, которые были выделены с помощью хроматографии на основной окиси алюминия. Один из них обладает свойствами, подобными брадикинину, но, по-видимому, не идентичен ему. Второй заметно отличается от брадикинина. Гипотензивное действие третьего пептида в отличие от всех других кининов характеризуется длительностью [697]. [c.220]

    Ароматические углеводороды относительно легко удается выделить из высокомолекулярной части нефти в виде концентратов, однако последние нелегко разделить на компоненты. В случае сернистых нефтей основная часть сераорганических соединений, близких по структуре ароматическим углеводородам, сосредоточивается в ароматических концентратах. Но даже при отсутствии сераорганических соединений нелегко разделить сложную многокомпонентную смесь, состоящую из наиболее сложно построенных гибридных молекул. Решить эту проблему можно только при использовании большого комплекса химических методов (избирательное гидрирование и дегидрирование, комнлексообразование, окисление) и физических (хроматография с использованием разных адсорбентов и элюантов, термодиффузия, масс-спектроскопия, инфракрасная и ультрафиолетовая спектроскопия, люминесценция и др.). Главная задача состоит в том, чтобы прежде всего выделить и установить структуру тех компонентов, которые составляют основную массу смеси. На эту задачу еще много десятилетий тому назад обращал внимание Д. И. Менделеев. В последнее время эта мысль Менделеева все чаще привлекает внимание исследователей. [c.299]

    Разделение на специфических адсорбентах. Влияние химии поверхности адсорбента и ее модифицирования на жидкостно-адсорб-нионную хроматографию компонентов из более слабо адсорбирующегося растворителя в общем сходно с таковым в газо-адсорбционной хроматографии. Однако в случае жидкостной хроматографии надо учитывать молекулярные взаимодействия с молекулами растворителя в соответствии с закономерностями адсорбции из растворов. Поэтому в жидкостно-адсорбционной хроматографии целесообразнее говорить о селективности хроматографической системы в целом адсорбент — растворенные вещества — растворитель. В качестве адсорбентов в жидкостно-адсорбционной хроматографии в основном использовались различные препараты окиси алюминия (активная,нейтральная и кислая окись алюминия) [46] и силикагели как в обычном виде,т.е. [c.215]

    Гель-проникающая хроматография в основном служит для разделения и находит широкое применение для очистки белков, в частности ферментов, а также нуклеиновых кислот. Гели иа основе декстрана особенно ценны при работе с нестабильными белками, что уже отмечалось выше. В препаративных целях используются как декстраны, так и полиакриламиды, причем объем геля может варьировать от нескольких миллилитров до нескольких литров. В промышленности находят применение колонки объемом 1000 л. Использование геля агарозы дает возможность с успехом фракционировать и очищать различные виды РНК и вирусов. [c.202]

    Газохроматографический метод. Это физический метод разделения и анализа смесей газов и паров летучих неразлагаю-Щ11ХСЯ кидкостен, основанный на разлишгой сорбционной способности компонентов, т. е. на различном распределении компонентов между движущейся газовой и неподвижной (твердой или жидкой) фазами. В зависимости от агрегатного состояния неподвижной фазы различают два основных вида газовой хроматографии  [c.38]

    Таким образом, - в высококипящих фракциях нефти, идущих на производство масел, скапливается основное количество серо-органических соединений — обычно 60—707о от содержащихся в исходной нефти. В тех случаях, когда перегонка нефти сопровождается разложением, часть этих соединений, термически менее устойчивых, может теряться в виде сероводорода или переходить из высококипящих фракций в низкокипящие. Однако основная часть сероорганических соединений остается в тяжелых дистиллятах и остатках. При разделении нвфтя1ных погонов с помощью хроматографии- на силикагеле или активной окиси алюминия эти соединения выделяются вместе с ароматическими углеводородами и смолами. Ниже приведены результаты хроматографического разделения на силикагеле средневязких дистиллятов сернистых и малосернистых нефтей (во всех случаях сера сопут- ствует ароматическим углеводородам и смолам) [1]  [c.22]

    Задачей препаративной хроматографии может быть также концентрирование и последующее выделение из смеси веществ, содержащихся в виде микропримесей к основному веществу. [c.18]

    Адсорбционная газовая хроматография основана на использовании различия в адсорбируемостп газов и паров. В зависимости от основного фактора, определяющего разделение, различают следующие виды газовой. хроматографии газо-жидкостную и газо-адсорбционную. [c.29]

    К адсорбционной хроматографии относятся адсорбц1юнио-жндкост-ная и газовая. Основные теоретические положения этих видов хроматографии имеют много общего, и поэтому рассматриваются в одном разделе. [c.276]

    Гель-хроматография является новым методом разделения. Бурное развитие метода началось в 1959 г. с получения первого декстранового геля> (Порас, Флодин). Поэтому теоретические вопросы разделения в гель-хроматографии находятся в стадии развития. Основные теоретические концепции этого метода — представление геля в виде геометрической модели, затруднение процессов диффузии и концепция распределения [16]. Существенное отличие метода гель-хроматографии от методов адсорбции и распределения заключается в том, что концентрация вещества в стационарной фазе никогда не превышает концентрацию вещества в подвижной фазе. Отклонения от этого правила могут происходить в случае взаимодействия между растворенным веществом и гелем. [c.351]

    Внешний вид интегратора И-02 и основные органы улравления показаны на рис. П.42. Для измерения сигнала хроматографа интегратор И-02 через разъем Вход 2/ с помощью виброустой-чивого кабеля подключается к выходу электрометрического усилителя (при работе с ионизационным детектором) нли блоку питания детектора по теплопроводности (по плотности). Допускается подключение интегратора параллельно входу регистрирующего прибора хроматографа, но при этом следует иметь в виду, что динамический диапазон интегратора несколько уменьшается. [c.98]


Смотреть страницы где упоминается термин Хроматография виды основные: [c.97]    [c.85]    [c.104]    [c.176]    [c.90]    [c.85]    [c.22]    [c.18]    [c.223]    [c.9]    [c.90]    [c.4]    [c.104]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте