Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция измерение

Таблица 3.8. Параметры уравнений (3.71) и (3.72) по данным диффузионных измерений скорости абсорбции в полиэтилене [15] Таблица 3.8. <a href="/info/263326">Параметры уравнений</a> (3.71) и (3.72) по данным <a href="/info/609597">диффузионных измерений</a> <a href="/info/30194">скорости абсорбции</a> в полиэтилене [15]

Таблица 18. Оптимальные параметры измерения абсорбции на спектрофотометре 1Ь-353 Таблица 18. <a href="/info/24576">Оптимальные параметры</a> измерения абсорбции на спектрофотометре 1Ь-353
    Уравнения (1.26) и (1.27) могут использоваться при любой аналитической форме члена г(с). Однако исследование свойств процесса абсорбции с быстрой химической реакцией может быть проведено без введения каких-либо определенных форм зависимости г с). Действительно, непосредственно из уравнения (1.27) можно увидеть, что в режиме быстрой реакции скорость абсорбции не зависит от времени диффузии to, а именно, от гидродинамических условий в жидкой фазе. Этот очень важный вывод составляет основу метода измерения поверхности раздела фаз. [c.28]

    Если принять во внимание, что различные теории основаны на различных гидродинамических условиях в окрестности границы раздела фаз, то можно сказать, что гидродинамические условия сильно влияют на величину k , но слабо на величину / [12]. Этот вывод подтверждает положение, выдвинутое во введении без доказательства. Однако, если бы гидродинамические условия сильно влияли на величину /, можно было бы использовать данные об измерении скоростей абсорбции для того, чтобы глубже проникнуть в гидродинамику процесса. Это, конечно, невозможно сделать, когда гидродинамические условия не влияют на величину I. Слабое влияние гидродинамических условий может быть легко объяснено на основе физической интуиции. [c.57]

    Для измерения величины поверхности раздела фаз широко использовались две системы СО2 — водный раствор ЫаОН и кислород— раствор сульфита натрия в присутствии жидкого катализатора. В обеих системах абсорбция протекает только в режиме перехода от быстрой реакции к мгновенной кроме того, реакция второй системы, вероятно, не соответствует первому порядку. Несмотря на это, порядок величины поверхности раздела фаз, определенный с помощью этих систем, вероятно, корректен. Физический смысл поверхности раздела фаз можно трактовать аналогично описанному в разделе 8.1. [c.98]

    Для проведения оптимизации аппарата необходима разработка математической модели, включающей адекватное описание элементарных процессов в абсорбционной зоне аппарата. Экспериментальных работ, которые дают материал для разработки и проверки подобных моделей, крайне мало. Это объясняется сложностью и трудоемкостью, а зачастую и отсутствием методов измерения характеристик двухфазного течения газ — капельная жидкость и массообмена в области параметров, характерных для промышленных аппаратов. Например, в работе [374] в опытах по абсорбции фтористого водорода водой исследовался вопрос об интенсивности массообмена в зависимости от расстояния от форсунки. Однако полученные авторами интересные выводы нельзя распространить на промьшшенные колонны, так как опыты проводились на колонне диаметром 0,1 м при Ур = 0,13 м/с, 5 = 0,23 м /(м ч), средним диаметром капель 8 мкм. [c.251]


    Основные цели, преследуемые дальнейшим обсуждением, заключаются в анализе механизма хемосорбции, в рассмотрении влияния химических и физических свойств систем на скорость абсорбции и в расчете этой скорости для различных условий. Ниже будет также показано, как результаты измерения скорости абсорбции могут быть использованы для определения таких физико-химических параметров, как константы скорости реакции и коэффициенты диффузии, а также для нахождения коэффициентов массопередачи и поверхности контакта фаз. [c.16]

    На рис. 1У-3, в показана полиэтиленовая втулка, которую можно перемещать и устанавливать на определенной высоте трубки На внешней поверхности втулки были прорезаны три вертикальные канавки. По достижении верха втулки жидкость стекала далее по этим канавкам, оставляя остальную поверхность не смоченной. Застойная пленка ири этом возникала только в канавках, которые выступали на 1—2 см выше неподвижного уровня жидкости. Так как поверхность жидкости в канавках составляла менее 2% общей поверхности стекающей пленки в колонне, то и ошибка не превышала этой величины. Эффективность описанного устройства для устранения влияния застойной пленки в нижней части колонны была продемонстрирована путем сопоставления скоростей абсорбции СОз водой, измеренной экспериментально и найденной расчетом (растворимость и коэффициент диффузии СОз в воде хорошо известны). [c.82]

    Рационально в начале исследований оценить правильность работы установки по результатам измерений скорости абсорбции СО 2 водой (растворимость и коэффициент диффузии для этой системы, как говорилось ранее, хорошо известны). Если применение СО2 неудобно из-за слишком низкой скорости абсорбции, вместо нее можно взять ЗОз. [c.86]

    Измерения в таком же сосуде, но с диспергированием газа в жидкости также показали, что при высокой интенсивности перемешивания скорость абсорбции пропорциональна давлению кислорода. Скорость абсорбции оставалась неизменной при использовании кобальта вместо меди (с той же концентрацией). Это свидетельствовало о независимости скорости абсорбции от скорости химической реакции и о влиянии на нее лишь скорости переноса от поверхности в массу жидкости. По данным Филлипса и Джонсона, значения киа при 600 и 4500 оборотах ъ I мин составляли около 0,044 и 0,88 eк соответственно. [c.256]

    Водопроводная вода, а также вода, длительное время находившаяся в контакте с воздухом, содержит растворенные газы, главным образом кислород. Он десорбируется из жидкости в абсорбционном пространстве и разбавляет абсорбируемый газ, что понижает скорость абсорбции. Этот эффект может быть незначительным, если поддерживать постоянный проток газа через абсорбционную камеру. Скорость абсорбции при этом определяют путем измерения расходов входящего и выходящего газа или анализа жидкости. [c.87]

    Значит, при протекании достаточно быстрых реакций скорость абсорбции одинакова для всех точек поверхности. При этих условиях В результате измерений нельзя получить отдельно значения А У 0 а и к . [c.92]

    Значит график зависимости логарифма скорости абсорбции единицей объема жидкости На ) от времени I выражается прямой линией с наклоном — а знание растворимости А при этом не является необходимым. Во многих случаях однако коэффициент к,а слишком велик, чтобы его значение можно было определять таким методом жидкость слишком быстро насыщается газом, и точные измерения На в различные промежутки времени оказываются невоз- [c.165]

    Значения могут быть измерены при абсорбции газа раствором реагента, с которым он мгновенно реагирует (см. раздел У-14). Так, можно абсорбировать раствором кислоты аммиак из его смеси с воздухом или раствором гидроокиси натрия — двуокись серы также из ее смеси с воздухом. В любом случае, если концентрация реагента в растворе достаточно велика, скорость абсорбции единицей поверхности будет кдр, где р — парциальное давление абсорбируемого газа в массе газовой фазы. Таким путем по результатам измерений скорости абсорбции получают значение кд для данного абсорбируемого газа. [c.180]

    Это уравнение можно использовать для расчета количества абсорбированного газа в колонне с данной высотой насадки или для нахождения kio. по результатам измерения скорости абсорбции. [c.189]

    Второе применение уравнения практически важно в тех случаях, когда прямое определение k a по данным физической абсорбции затруднено. Это может быть при достижении на одном из концов колонны условий, весьма близких к равновесным, что требует крайне точного измерения концентрации для определения k a. Тогда к жидкости следует добавить реагент такого типа и концентрации, чтобы масса жидкости поддерживалась в состоянии равновесия (предпочтительнее — с нулевой концентрацией непрореагировавшего растворенного газа) без заметного протекания реакции в диффузионной пленке. Надо лишь проявлять осторожность при выборе абсорбента с тем, чтобы обеспечить одновременное выполнение обоих условий. [c.189]


    При экспериментальном определении каа с помощью физической абсорбции хорошо растворимых газов (чаще всего аммиака водой) требуется соответствующий учет равновесного давления газа над раствором, а также нередко и частичного сопротивления массопередаче со стороны жидкости. Если прн этом необходимо работать с колоннами сравнительно большой высоты (например, при специальном исследовании влияния высоты насадки на k( a), использовать систему аммиак — вода можно лишь заменив обычный метод измерения концентрации NH3 на более точный. Доп. пер. [c.207]

    IX-1-3. Сопротивление массопередаче в жидкой фазе и межфазная поверхность. Для оценки влияния химической реакции на скорость абсорбции газа необходимо знать величины и ав отдельности. Величина объемного коэффициента kiO. может быть легко измерена путем абсорбции с учетом сопротивления в газовой фазе или при полном устранении сопротивления со стороны газа в таких измерениях. Если независимо от этого определить а, то по величинам к а [c.207]

    Значительная зависимость поведения дисперсной системы от физических свойств жидкости (а также и газа) выдвигает еще одну проблему. Если экспериментальные условия измерения скорости абсорбции, сопровождаемой химической реакцией, и скорости физической массоотдачи (ее коэффициента к ) не полностью гидродинамически идентичны, то нельзя найти действительные значения коэффициента ускорения абсорбции химической реакцией. Во избежание этого затруднения целесообразно измерять к1 одновременно с измерением скорости абсорбции реагирующего газа. Такое измерение . можно производить, используя, например, десорбцию [c.224]

    Абсорбция кислорода сульфитными растворами применялась также для измерения межфазных поверхностей в абсорбционных [c.257]

    При абсорбции кислорода раствором сульфита натрия была измерена поверхность раздела газовой и жидкостной фаз в псевдоожиженных слоях твердых частиц размером от 0,3 до 3 мм. Установлено, что поверхность раздела фаз падает с уменьшением порозности слоя, причем она мало чувствительна к изменению размера частиц. При измерении размеров пузыря и поверхности раздела фаз в случае газожидкостного псевдоожижения стеклянных бус диаметром 6 мм место расположения устройства для ввода газа позволяло создавать достаточно большие пузыри в основании слоя. Было установлено, что по мере удаления от газораспределительной решетки средние размеры пузырей уменьшаются, а поверхность раздела между газом и жидкостью увеличивается. Более интенсивное дробление пузырей наблюдали при повышенной скорости и в слоях с малым расширением. [c.661]

    При выполнении этих условий величина межфазной поверхности А на данном участке аппарата может быть определена путем измерения скорости абсорбции либо чистого кислорода, либо кислорода из воздуха, имея в виду, что [c.258]

    Видимо, по массопередаче в газожидкостных псевдоожиженных слоях было опубликовано всего лишь два исследования. В нервом из них измеряли скорость абсорбции водой двуокиси углерода из смеси ее с азотом. В качестве твердой фазы использовали частицы кремнезема (эквивалентный диаметр 0,22 мм) и стеклянные шарики (0,5 и 0,8 мм). Количественных корреляций, например, в виде коэффициентов массообмена предложено не было, но можно отметить ряд качественных особенностей процесса. Скорость абсорбции повышается с ростом скорости жидкости для частиц всех размеров и понижается с увеличением размера частиц для всех скоростей жидкости. Скорости абсорбции были ниже измеренных в аналогичной газожидкостной системе, не содержаш ей твердых частиц. Эти выводы отчасти подтверждаются рассмотренными ранее данными о коалесценции пузырей .  [c.673]

    Значение радикала может быть найдено по измерениям скорости абсорбции тем же абсорбентом при той же температуре газа с тем же парциальным давлением в лабораторной модели с известной величиной А (например, в колонне с орошаемой стенкой или в ячейке с мешалкой). [c.258]

    Условие о(Т, Р) =а(Т, Р О) позволило [15] допустить, что барическая зависимость коэффициента проницаемости определяется исключительно диффузионным фактором, прежде всего ростом коэффициента диффузии с концентрацией растворенного газа в мембране. Измерения скорости абсорбции газов в полиэтилене [15] позволили установить линейную зависимость парциального коэффициента самодиффузии О , газа в полимере [см. уравнение (3.25)], аналогичную показанной на рис, 3.11 для диффузии пропана в полимере [ (СНз)25 0]а . [c.100]

    Очевидно, что количество вещества, поглощенного при абсорбции или выделенного при десорбции, прямо пропорционально поверхности контакта газовой и жидкой фаз Г, движущей силе абсорбции, измеренной разностью парциальных давлений рг — рр или разностью концентраций, продолжитедсьпости контакта т и некоторому коэфф1пщенту К, зависящему от свойств системы и гидродинамического режима процесса. [c.223]

    ВОЗМОЖНО ближе к линии селена (1960,3 А). Наиболее подходящей для этой цели оказалась линия висмута 1959,9 А. Она находится очень близко к линии селена, следовательно, коррекция на неселективиое поглощение (4в1) будет у них одинаковой в то же время эта линия висмута находится достаточно далеко от полосы атомной абсорбции атомов селена (полуширина селеновой линии 0,01 А) [3]. Фактическая величина атомной абсорбции селена определяется по формуле А = Лзе— —Лв1, где Лзе — абсорбция, измеренная с селеновой лампой Ав1 — абсорбция, измеренная с висмутовой лампой. [c.57]

    Для проектирования и расчета оросительных устройств важна оценка влияния числа точек орошения насадки аппарата, основанная на измерении ко ффи-циентов массопередачи. Такие работы проводились исследователями обычно в колоннах небольшого диаметра. Наиболее полно этот вопрос изучен в работах Н. М. Жаворонкова и В. М. Рамма [17, 86]. В опытах определяли влияние числа точек орошения п на объемный коэффициент абсорбции Л г аммиака водой из смеси его с воздухом в колонне диаметром 500 мм, насаженной регулярно уложенными и засыпанными навалом кольцами Рашига разного размера. В этой же колонне проводили ()пыт1,1 но влиянию п при десорбции СОг из воды воздухом. Были испытаны регулярно уложенные слои насадки колец Рашига 50x50 мм высотой Я=1600 и 6000 мм. Для оценки эффективности числа точек п введен условный коэффициент ухудшения у, показывающий, насколько степень абсорбции при данном числе точек ниже, [c.50]

    Весьма вероятно, что удастся обобщить и систематизировать из-м ерения абсорбции инфракрасной части спектра и получить быстрый метод качественного анализа углеводородных смесей. След я числу классов углеводородов, представленных в смеси, числу, которое ниже Ш1И равно пяти (парафиновые, олефиновые, циклические насыщенные, гидроароматические и ароматические), можно установить равное число уравнений, связывающих концентрации различных, представленных в смеси классов углеводородов, зная уравнение, выведенное из измерений 1) дисперсии рефракции, 2) магнитного вращения плоскости поляризации, 3) критической температурьг растворимости в анилине, 4) критической температуры растворимости в беязило-Бом спирте, а также имея в виду равенство — [c.110]

    Информация о кинетике реакций может быть получена по результатам изучения общей скорости абсорбции (см. главу И1). Кроме того, известна методика, основанная на быстром смешении двух растворов, содержащих реагенты, и последующем протекании смеси по узкой трубке с высокой скоростью. При этом процесс идет в установившихся условиях, а степень взаимодействия в различных точках трубки (а следовательно, — через различные промежутки времени после смешения) оценивают по результатам измерений температуры или окраски индикатора. Используют также методику с мгновенной остановкой потока смешанной жидкости и замером (например, оптическим методом) изменения ее состава со временем в определенной точке трубки. Методы изучения кинетики быстрых реакций приведены в обзоре Кэлдина . [c.41]

    Скривен и Пигфорд использовали фигурное сопло, дававшее несужающуюся струю диаметром 1,5 мм. При измерении скорости абсорбции СО2 водой были получены результаты, хорошо согласующиеся с предсказанными на основе предположения о стержнеподобном потоке жидкости (продолжительность 3 мсек и более). Последующий анализ гидродинамики струи, предпринятый Скри-веном и Пигфордом показал, что ошибка, обусловленная допущением однородного стержневого потока жидкости, вряд ли могла быть более 2—3%. [c.85]

    Отсюда коэффициент диффузии Ов можно определить, не зная величины Л и О а- Этот метод был предложен Шармой Таварес да Силва пытался его применить для определения коэффициентов диффузии аминов путем измерения скорости абсорбции НаЗ их растворами. Сероводород реагирует с аминами мгновенно. Однако при низких концентрациях, являющихся необходимым условием применения уравнения (IV,26), реакция становится обратимой. Поэтому для указанной цели все же потребовалось использовать более высокие концентрации и для интерпретации результатов опытов понадобилось знание величин Л и Ьд, что усложнило процедуру. [c.95]

    Отметим также, что вместо расчетов такого типа, какие представлены в этой главе, можно провести лабораторные опыты по измерению скорости абсорбции R единицей поверхности раздела жидкости и газа с использованием полученной информации для расчета процесса без привлечения данных о реакционной кинетике (см. главу VII, а также раздел VIII-1-4). [c.108]

    Обычно значение к а для самого верхнего слоя насадки (высотой в несколько насадочных элементов) оказывается большим, чем в основном насадочном слое, из-за несколько различного характера движения жидкости при ее первоначальном распределении и при течении по насадке. Учет влияния такого концевого эффекта на правильность получаемых значений к а возможен путем измерения скорости абсорбции при различных высотах насадки, как это сделано, например, Данквертсом и Кеннеди и Данквертсом и Гиллхэмом [c.213]

    Как указано ниже (см. раздел 1Х-1-5), межфазная поверхность, эффективная для физической абсорбции, вероятно, меньше обш,ей эффективной поверхности при наличии в жидр ой фазе химического превращения растворенного газа. Следовательно, значения которые получаются делением к а на а (при определении величины делимого из опытов по физической абсорбции, а делителя — по результатам измерения скорости абсорбции, сопровождаемой химической реакцией), вероятно, занижены. Поэтому значения к , представленные на рис. 1Х-2, могут быть использованы для расчета абсорбционных аппаратов с соответствующим запасом надежности. [c.214]

    Прн работе с некоторыми системами значение коэффициента физической массоотдачи к в условиях абсорбции, сопровождаемой реакцией, может суи1ественно отличаться от соответствующего значения при отсутствии реакции. Это наблюдается, например, при абсорбции двуокиси углерода растворами аминов, как установлено в работе П. Л, Т. Бриана и др., результаты которой рассмотрены в разделе Х-1, а также в работе Ю. В. Аксельрода, Ю, В. Фурмера и др. . При таких обстоятельствах, как и в более общем случае рекомендуется одновременно определять скорость абсорбции, сопровождаемой химической реакцией, и коэффициент кь-Последний может быть найден путем измерения скорости физической абсорбции или десорбции из раствора инертного компонента одновременно с абсорбцией газа, [c.214]

    Значения для беспорядочно загруженных колец и седел оказались меньшими, чем при сопоставимых условиях. Кроме того, если значения снижаются при увеличении размера насадочных тел, т. е. с уменьшением то для имеет место другая картина. Поданным Шулмэна и др. насадки размером 25 мм обладают значительно большей эффективной поверхностью а , чем мелкие насадки (размером 13 мм), и несколько большей а , чем насадки более крупного размера (38 мм). Для объяснения этого указанные авторы использовали результаты измерения объема I жидкости в единице объема насадочного слоя. Для насадки размером 13 мм значение I очень велико, причем большая часть жидкости находится в сравнительно малоподвижном состоянии. Вследствие этого значительная доля поверхности очень мелкой насадки может быть покрыта жидкостью, фактически не участвующей в физической абсорбции. [c.216]

    Значения а, представленные на рис. IX-1, определены при абсорбции газов концентрированными растворами реагентов. Поэтому они примерно соответствуют значениям Ош для испарения воды, имеющимся в литературе. Онда и др. показали, что величины смоченной поверхности и межфазной поверхности, найденной по результатам измерения скорости абсорбции Oj растворами NaOH, одинаковы. Приведенное уравнение (IX,28) получено обобщением экспериментальных данных для смоченной поверхности, но фактически оно дает значения а, достаточно близкие представленным на рис. IX-1. [c.219]

    IX-1-6. Продольное перемешивание. Как отмечалось в разделе VI П-1, при расчетах противоточной абсорбции в насадочных колоннах обычно принимают, что и газ, и жидкость движутся поршневым потоком , в котором элементы жидкости, входящие в колонну в одно и то же время, движутся через аппарат, не опережая и не отставая друг от друга, и выходят из него также одновременно. Известно, что такое допущение об идеальном вытеснении не совсем точно отражает реальную картину и что на самом деле происходит некоторое перемешивание, или обмен местами между элементами потока, входящими в колонну не одновременно. Измерения степени перемешивания жидкости и газа проводились, например, Де Мариа и Уайтом Сэтером и Левеншпилем и Де Ваалем и Мэмереном [c.219]

    Опубликовано достаточно много результатов экспериментальных измерений скорости абсорбции СОа растворами NaOH и КОН в условиях, при которых раствор мог считаться неподвижным и имеющим бесконечную глубину, а значит, выражения, выведенные в главе П1, должны были быть справедливыми. Конечно, невозможно прямым путем измерить растворимости и коэффициенты диффузии СОа в растворах КОН или NaOH. Кроме того, реагентом является ион ОН , что выдвигает некоторые проблемы, связанные с диффузией ионов в растворе (см. раздел 1-2). [c.239]

    Расчет коэффициента ускорения абсорбции при химическом взаимодействии между СО, и амином с использованием значений к , найденных одновременно с абсорбцией Oj названным выше методом, позволил П. Л. Т. Бриану и др.7а и Ю. В. Аксельроду, Ю. В. Фурмеру и др. получить более согласованные с теорией, изложенной в главах III и V, результаты, чем при использовании коэффициентов массоотдачи без учета влияния на них протекающего химического процесса. Это дополнительно свидетельствует о рациональности предложенного 20а для более общего случая экспериментального определения значений ки одновременно с измерением скорости абсорбции, сопровождаемой химическим взаимодействием (см. также стр. 224 в разделе IX-2). Доп. пер. [c.250]

    I Осевая дисперсия жидкости. II Измерение межфазной поверхности (путем абсорбции i Oj раствором NaOH). [c.279]

    Е 1 1 i S S. R. М., В i d d U 1 р h М., hem. Eng. S i., 21, 1107 (1966). Измерения турбулентности у поверхности раздела фаз (в условиях понижения и повышения поверхностного натяжения при абсорбции и десорбции ацетона и метанола водой). [c.281]


Смотреть страницы где упоминается термин Абсорбция измерение: [c.60]    [c.146]    [c.95]    [c.216]    [c.217]    [c.250]    [c.284]    [c.287]   
Вода в полимерах (1984) -- [ c.456 , c.459 ]




ПОИСК







© 2025 chem21.info Реклама на сайте