Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурное исследование органических веществ

    Еще одна традиционная задача органического синтеза — подтверждение строения природных соединений путем так называемого встречного синтеза. Смысл его ь том, что наиболее надежным, бесспорным доказательством установленной аналитическими методами структуры нового вещества являются его химический синтез и идентификация природного и синтетического образцов. Значение такого подхода сейчас, правда, несколько сшг/кается благодаря развитию высокоточных и чрезвычайно надежных методов структурного исследования, что иногда делает встречный синтез не столь обязательным, иногда даже украшательским элементом исследования. Тем не менее во многих случаях необходимость его не подлежит сомнению. [c.117]


    СТРУКТУРНОЕ ИССЛЕДОВАНИЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ [c.221]

    При практическом использовании спектров поглощения для структурных исследований органических соединений необходимо сравнивать спектры изучаемых объектов со спектрами веществ с заведомо известными структурами. [c.94]

    Структурные исследования различных веществ непосредственно подтверждают на опыте теорию химического строения А. М. Бутлерова. Кристаллические исследования, устанавливающие связь между химическим составом и структурой химических соединений, в том числе и органических соединений, дают важнейший материал для дальнейшего развития теории строения химических соединений, с помощью которой советские химики прокладывают новые пути в области создания и синтеза химических продуктов и материалов с заданными свойствами. [c.11]

    Сложная многокомпонентная смесь неуглеводородных компонентов нефти была разделена на несколько фракций более или менее однородных но составу и свойствам веществ. Это несколько упрощало изучение их строения. К середине нашего столетия были разработаны и испытаны новые физические методы, позволяющие решать ряд структурно-молекулярных вопросов, касающихся сложных органических веществ. Удачно подобранный комплекс таких методов позволил приступить непосредственно к изучению строения молекул нефтяных асфальтенов. Корреляция полученных данных с прямыми химическими исследованиями делает особенно достоверными сведения о химическом строении молекул нефтяных [c.91]

    В последнее время для детального изучения масляных фракций стали применять также масс-спектроскопию и спектроскопию в ультрафиолетовой области спектра. Такие детализированные исследования весьма трудоемки. Более доступны групповой хроматографический и структурно-групповой анализы. Когда говорят о групповом составе масляных фракций, то имеют в виду лишь те группы органических веществ с более или менее общими свойствами, которые удается отделять друг от друга путем избирательной адсорбции на некоторых адсорбентах. [c.69]

    ЧТО огромное разнообразие веществ растительного и животного происхождения образовано весьма небольшим числом химических элементов (углерод, водород, кислород, азот и некоторые другие). К тому же, при одинаковом составе вещества имеют разные свойства. Это означало, что свойства веществ зависят не только от состава, но и от структуры. Если при зарождении химии как науки главным направлением был химический анализ, то с появлением структурной химии — органический синтез. Сегодня структурная химия строится на квантовомеханических представлениях о химической связи, строении молекул и кристаллов, на методах исследования структуры веществ, изучении влияния структуры на свойства веществ и пр. [c.6]


    Различная способность к графитации коксов объясняется неодинаковыми возможностями для ориентации ароматических макромолекул, образующихся при нагреве органических веществ, что определяется двумя факторами химическим строением исходного вещества [1—4] и условиями его карбонизации )[5, 6]. В этих работах показано, что изменение условий карбонизации, т. е. приложение давления на стадии карбонизации к неграфитирующемуся в обычных условиях веществу позволяет получить графитирующийся кокс. Под давлением в материале формируются участки с предпочтительной ориентацией ароматических макромолекул, что обусловливает получение кокса с высокой способностью к графитации. Сравнительное исследование электронных свойств (термоэлектродвижущей силы, электропроводности) кокса фенолформальдегидной смолы (ФФС), полученного без приложения давления и под давлением, показало, что основные этапы структурных превращений в этих материалах практически одинаковы, несмотря на их различную способность к графитации [7]. [c.188]

    Большое удивление вызвали результаты, полученные при исследовании осадочных органических веществ в сырой нефти и в некоторых осадочных породах были идентифицированы производные гопана в большом разнообразии (более 200 структурных типов) и в большом количестве — последнее [c.183]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]

    Результаты исследований явились в значительной степени теоретической базой при разработке в СССР технологических процессов синтеза высокомолекулярных сукцинимидных присадок, алкилфенолов с высокомолекулярными радикалами линейного строения, компонентов поверхностноактивных веществ при жидкофазном окислении высших альфа-олефинов, ненасыщенных жирных кислот по реакции металлирования альфа-олефинов натрийорганическими соединениями, высокочистых полифениловых эфиров, эпоксидов, антиоксидантов синтетических каучуков, высокомолекулярной присадки для стабилизации полиметилсилоксановых жидкостей, применяемых в новой технике. Актуальное научное значение для дальнейшего развития молекулярной спектроскопии и теории строения молекул имеют конформационные исследования низкомолекулярных и высокомолекулярных соединений, спектрально-структурные корреляции по различным классам органических веществ. [c.3]

    Многочисленные экспериментальные данные по исследованным классам веществ показали, что из всех колебательных частот метиленовой фуппы — валентных и деформационных колебаний — наиболее чувствительными к ближайшему окружению являются ножничные деформационные колебания. С учетом значимости физико-химических свойств активной метиленовой группы в кинетике реакций и структурном анализе органических соединений изучение закономерностей в частотах ножничных деформационных колебаний СН -групп следует отнести к кардинальным вопросам инфракрасной спектроскопии полимеров, органических и биологически активных соединений. [c.7]


    Результаты конформационных исследований низкомолекулярных и высокомолекулярных соединений, спектрально-структурные корреляции по различным классам органических веществ способствуют прогрессу биоорганической химии, повышению научного уровня обучения студентов. [c.10]

    Для отражения последовательности соединения атомов, направления а-связей, валентных углов, структурных изомеров используют шаростержневые модели, для моделирования бокового перекрывания электронных облаков при тс-связи, пространственной изомерии — плоскостные модели из картона. Широко применяются в школе пластилиновые модели (их иногда еще называют масштабными) — очень простые и доступные в изготовлении. Моделирование химических процессов осуществляется средствами мультипликации в учебных кинофильмах и т. д. Моделирование широко используется в научных исследованиях при проектировании органического синтеза, анализе органических веществ, и это лишний раз доказывает, что в химии методы обучения отражают с определенным приближением методы химической науки. [c.250]

    Поскольку высота пиков пропорциональна числу ядер выбранного типа, присутствующих в данном соединении, спектры ЯМР можно использовать и для количественного анализа эта возможность была осуществлена. Измеряя высоту пиков, отвечающих различным типам ядер, можно на основании одного спектра провести ряд определений. Большей частью регистрируются спектры протонного резонанса, поэтому основная часть аналитических применений, так же как и структурных исследований, относится к углеводородам, а также к другим природным или синтетическим органическим соединениям. Одним из интересных аспектов количественных исследований является определение воды в широком круге веществ. [c.190]

    Путем минимизации энергии и, выраженной с помощью атом-атомных потенциалов, в многочисленных исследованиях, полный перечень которых дан в обзоре [83], удалось расчетным путем воспроизвести кристаллическую структуру весьма разнообразных органических веществ. Правда, структурный класс ири этом считался известным и лишь в некоторых работах рассматривалось несколько возможных структурных классов. [c.159]

    В книге I рассмотрены в основном физические мет.оды исследования. Первая глава является как бы вводной, она посвящена выделению, очистке и предварительным исследованиям изучаемых веществ. В седьмой главе рассматриваются возможные пути биогенеза. В книге П подробно изложены химические методы решения структурных задач — защита различных функциональных групп, их восстановление, специфическая деструкция, пути направленного расщепления молекул исследуемых соединений. Две последние главы посвящены проблемам стереохимии и молекулярным перегруппировкам органических соединений. [c.4]

    Как показано на примере бутанов и пентанов, данных об эмпирическом составе органического соединения еще недостаточно для того, чтобы составить правильное представление о природе вещества только структурная формула позволяет глубже уяснить его строение. Поэтому первая задача при исследовании органического соединения всегда состоит в выяснении его структурной формулы, и химик-органик по возможности всегда пользуется именно ею. Дальнейшим развитием структурной формулы является пространственная фо рыула, с помощью которой стремятся отразить расположение атомов в пространстве. [c.28]

    В настоящее время интенсивно проводятся синтез и всесторонние исследования органических соединений серы, присутствие которых предполагается или установлено в нефтяных фракциях, а также производных этих соединений. Наибольший интерес как потенциальный источник сырья для производства растворителей, экстрагентов, флотореагентов, биологически активных и других веществ представляют сульфиды разного строения. Значительное место в исследовании состава и строения этих веществ занимают спектральные методы, для использования которых необходим справочный материал в виде структурно-частотных корреляций, получаемый при анализе индивидуальных соединений, модели рующих компоненты исследуемых систем. [c.160]

    В практической деятельности каждый химик-органик сталкивается с необходимостью определения органических веществ не только на конечной, но часто и на промежуточных стадиях синтеза. Эта задача решается различными методами в зависимости от того, было анализируемое вещество известно ранее, т. е. описано ли оно в литературе, или получено впервые. В первом случае необходимо доказать идентичность исследуемого образца и вещества, строение которого известно и свойства охарактеризованы во втором случае необходимо провести исследование, в результате которого будет составлена структурная формула соединения. Естественно, что первая задача более проста, чем вторая. [c.210]

    В настоящее время широко применяются физические методы исследования для определения строения органических молекул рентгеноструктурный анализ, структурная электронография, инфракрасная спектроскопия, комбинационное рассеяние света, дипольные моменты, электронные спектры поглощения, электронный парамагнитный резонанс, ядерный магнитный резонанс. Теория химического строения раскрыла неисчерпаемые возможности для синтеза разнообразных органических веществ с заранее заданными свойствами. [c.306]

    По мере развития синтетической органической химии в литературе начинают появляться отдельные сообщения о синтезе и исследовании высокомолекулярных веществ. Совершенно естественно, что вначале это являлось результатом случайной удачи до тех пор, пока трудами Бутлерова, Кекуле и Купера (1858—1861) не была создана структурная теория органической химии. [c.5]

    Следующий важнейший этап в истории термохимии связан с именем Гесса, которому принадлежат такие фундаментальные обобщения, как положение о том, что тепловой эффект реакции не зависит от промежуточных стадий, а зависит только от исходного и конечного состояния системы (закон Гесса) и что количество выделяющегося при реакции тепла может служить, мерой химического сродства. Хотя свои термохимические работы Гесс начал как раз тогда, когда, как он писал Берцелиусу, был всецело занят исследованиями по органической химии [14, с. 331, однако материалом для работ по термохимии ему служили почти исключительно неорганические соединеш я. И тем не менее в 1840 г. Гесс дает следующее толкование результатам опытов Дюлонга по изучению различной теплотворности угля и других органических веществ сумма тепла, которая соответствует определенному количеству воды и углекислоты, образующихся при горении угля, постоянна, а потому очевидно, что если водород был ранее связан с углеродом, то это соединение не могло произойти без выделения тепла это количество теплоты уже исключено и не может содержаться в той теплоте, которая выделяется при окончательном сгорании угля. Отсюда следует весьма простое практическое правило горючее, сложное по своему составу, всегда выделяет меньще тепла, чем его составные части, отдельно взятые . И далее Гесс как бы намечает контуры будущей структурной термохимии Когда мы будем точнее знать те количества теплоты, которые выделяются при взаимодействии нескольких элементов, тогда количество теплоты, выделяющееся при сгорании органического вещества, будет важным фактором, который приведет нас к более глубокому познанию строения этого вещества [15, с. 127, 128]. [c.110]

    Состав большинства неорганических веществ однозначно характеризует их молекулярное строение Н2304 — это всегда серная кислота ЫазР04 — это всегда фосфат натрия КА1 (504)2 —это всегда алюмокалиевые квасцы и т. д. В органической химии широко распространено явление изомерии— существуют разные вещества, имеющие одинаковый состав молекул. Эмпирические, суммарные формулы становятся поэтому для органических соединений неоднозначными простая формула С2Н6О отвечает как этиловому спирту, так и диметиловому эфиру более сложные эмпирические формулы могут соответствовать десяткам, сотням и даже тысячам различных веществ. С созданием бутлеровской теории химического строения стало ясно, что изомеры отличаются друг от друга порядком химической связи атомов — химическим строением. Определение химического строения, установление структурной формулы стало (и остается до сих пор) главной задачей при исследовании органических веществ. [c.84]

    Нет надобности доказывать исключительно важное значение углеводородов ряда метана в различных нефтях. Алканы, наряду с циклоалканами, составляют основную массу углеводородов любых нефтей. Еще большую роль в нефтях играет так называемый алифатический углерод , т. е. углерод, входящий в состав метиленовых и метильных групп. На эти два структурных фрагмента (особенно первый) приходится до 70% всего углерода нефти. Поэтому правильное понимание путей образования алканов нефтей — ключ к познанию всей проблемы происхождения нефти в целом. Надо заметить, что интерес к этой проблеме в последнее время заметно возрос, так же как и возрос интерес к исследованию органического вещества земной коры. С нашей точки зрения изучение химических, вернее геохимических, условий образования нефтей в природе кроме чисто познаватель- [c.213]

    В настоящее время еще далеко не выявлены веете большие возможности в исследовании структурных особенностей органических веществ, которые заложены в самом полярографическом методе. Больше того, в некоторыхслучаях, правда, довольно редких, эти возможности подвергаются даже сомнениям. Дело в том, что результаты полярографических определений химики иногда пытаются применить к анализу структурных особенностей молекул органических веществ без учета механизма электродного процесса и некоторых усложняющих его моментов (вызванных адсорбцией, кинетическими ограничениями),,о которых говорилось выше. Учет же этих факторов практически всегда приводит полярографические характеристики органических соединений в соответствие со структурными особенностями их молекул. [c.22]

    Физические методы определения структуры молекул занимают теперь центральное место в арсенале средств, используемых хими-ками-органиками. Элементарное ознакомление с важнейшими из них предполагается уже при прохождении общих курсов и практикумов по органической химии. Современные учебники органической химии содержат поэтому основные сведения о физических методах структурного анализа, а иногда в них даются также отдельные примеры и задачи по интерпретации простейших спектров протонного магнитного резонанса, инфракрасных и электронных спектров. Более глубокое изучение физических методов и систематическое развитие необходимых практических навыков осуществляются в специальных циклах лекций, лабораторных и семинарских занятиях для студентов старших 1 урсов и в аспирантуре. Используемая для этой цели литература весьма многочисленна и разнообразна по содержанию и уровню изложения, предмета. При этом, однако, ощущается недостаток учебных пособий для выработки и закрепления элементарных навыков истолкования спектральных данных и результатов измерений важнейших физических параметров молекул при структурном анализе. Особенно нужны сборники примеров и упражне ний, точно воспроизводящих в достаточно крупном масштабе подлинные спектры, полученные на современной аппаратуре, их особенности и пропорции. Такие материалы необходимы для тренировки визуального восприятия и интерпретации спектрограмм, оценки их качества, развития элементов зрительной памяти, очень облегчающих и ускоряющих использование молекулярных спектров для установления структуры. Наша книга написана с целью восполнения пробела в существующей литературе и отражает опыт преподавания физических методов исследования органических веществ студентам IV и V курсов химического факультета Ленинградского университета, специализирующимся по теоретической и синтетической органической химии, органическому анализу, химии природных и высокомолекулярных соединений. [c.3]

    Исследование св011ств моиомолекулярных слоев (нерастворимых нленок) методами измероиия двухмерного давления, скачка потенциала, вязкости, структурно-механических свойств и т. д. оказалось очень плодотворным и позволило изучить структуру молекул некоторых сложных органических веществ. Наибольшие успехи в этой области были, пожалуй, достигнуты нри исследовании стеринов и гормонов [18, 63]. Появились работы, посвященные изучению мотюмолекулярных слоев 25  [c.387]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    В ряде случаев задачей структурного анализа является не выяснение структуры вещества в целом, а только определение природы и содержания некоторых атомных групп, определяющих свойства вещества. Такие структурные группы могут входить в каркас молекул или являться функциональными. Структурно-групповой анализ применяют при исследовании сложных природных или технических продуктов, для которых очень трудно или невозможно полностью определить структуру. Метод находит также применение при исследовании смесей веществ, из которых выделение отдельных соединений слишком длительно, или тогда, когда нет необходимости их выделения 126]. Простейшим примером структурно-группового анализа является качественный анализ неорганических соединений в растворах, поскольку при этом во многих случаях определяют не сами элементы, а определенные структурные группы (например, SOI, 50Г. l", С10 , СЮз, IO4 и т. д.). В области органической химии качественный анализ по Штау-дингеру является простейшей формой анализа структурных групп. [c.406]

    Структурные теории твердого тела — только что появившаяся область знаний. Иногда ее называют химией твердого тела , химией твердого состояния , но она, с другой стороны, является также и физикой твердого тела, так как в основном оперирует физическими понятиями и использует физические методы исследования. Это одно из наиболее перспективных направлений развития структурной химии, ибо оно обещает стать реальной основой неорганического синтеза. До сих пор неорганическая химия, подобно органической химии, основывалась на атомно-молекулярпом учении. Но это было грубой идеализацией, так как в отличие от органических веществ подавляющее большинство неорганических соединений представлено не совокупностями молекул, а реальными кристаллами. Неорганическая химия поэтому не имела таких успехов в синтезе химически индивидуальных веществ, каких достигла органическая химия она успешно решала задачи синтеза лишь тех соединений, которые существуют в форме совокупности молекул, например синтеза аммиака. Получение же оксидов, сульфидов, селенидов и многих других солей, а также интерметаллических соединений осуществлялось отнюдь не по принципу синтеза запроек-гироваиных структур, как это было в органическом синтезе, а по принципу стехиометрии, т. е. не в русле структурной химии, а в русле учения о составе — на уровне первой концептуальной системы. [c.99]

    Обзор литературных данных по строению органических веществ с 1929 по 1973 год [256, 257] и до настоящих дней позволяет систематизировать структурные исследования кристаллических компонентов серных вулканизующих систем в соответствии с их принадлежностью к определенным классам соединений и предвидеть возможности образования при их смещении эвтектических систем и твердых растворов замещения. Такой прогноз облегчается при наличии информгщии о геометрическо] форме кристаллических молекул и параметрах элементарных ячеек, а также о принадлежности кристаллов к определенной сингонии [258] и структурному классу. [c.63]

    Коль скоро величина предельного пересыщения зависит от взаимодействия растворенного вещества с растворителем, необходимо учитывать природу и того, и другого. В предшествующем параграфе мы рассмотрели связь и с природой растворимого. Теперь предстоит выяснить в этом отношении роль второго компонента системы. Как показали исследования [52, 53, 77—79], природа растворителя играет немаловажную роль. В табл. 12 представлены данные Товбина и Красновой [53]. Они показали, что чем ниже диэлектрическая проницаемость растворителя, тем меньше соответствующие предельные пересыщения, В данном случае речь идет о растворах неорганических солей, взаимодействие ионов 1 оторых с молекулами растворителя уменьшается с уменьшением е. Табл. 13 составлена по данным [77], относящимся к предельным переохлаждениям растворов нафталина в различных не-Еодных средах. В этом случае нет прямой связи в и 9,, ,. Данные говорят лишь о том, что величина предельного переохлаждения существенно зависит от природы растворителя. Что касается органических веществ, свойства их растворов в значительной мере определяются структурным сходством растворимого и растворителя, поэтому и не наблюдается зависимости предельных переохлаждений от диэлектрической проницаемости. Значения 0 р в табл. 13 получены тем же способом, что и в других работах этой школы [77, 79, 89, 92 ]. Величины же в относятся к стандартным условиям. Пожалуй, можно отметить, что в основном величина предельного [c.48]

    Последнее положение является наиболее существенным, так как оно подводит к уяснению чрезвычайно важной закономерности каталитического акта — структурно-химического соответствия между реагентами и катализаторами в гетерогенном катализе. Надо сказать, что эта закономерность предугадывалась уже Зелинским (см. гл. VI), в работах которого особое внимание было обращено на контакт органического вещества с агентом. Вполне отчетливо на существование этой закономерности и ее характерные черты указал Баландин в 1929 г. [59]. Баландин, Казанский, Шуйкин, Ридил, Тунг, Херингтон, Гриффит и другие широко использовали гипотезу о структурно-химическом соответствии для многих каталитических реакций, которая легла в основу учения о геометрическом факторе в катализе. Закономерность о структурно-химическом соответствии получила. подтверждение также в работах по рентгенолра фии гетерогенных катализаторов, в частности в исследованиях Рубинштейна. [c.177]

    В настоящей главе будет рассмотрено применение масс-спектрометрии для качественного анализа. В таких исследованиях масс-спектрометр используется в сочетании с другими методами для получения необходимой информации, позволяющей идентифицировать неизвестное соединение. Рассматриваемое вещество может быть идентифицировано только тогда, кргда установлена его структурная формула в этом отнощении задачи анализа органических соединений отличаются от неорганического анализа, когда для идентификации соединения достаточно установить его элементарный состав. Однако определение элементарного состава органического вещества, т. е. его молекулярной формулы, является необходимой предпосылкой его идентификации. [c.298]


Библиография для Структурное исследование органических веществ: [c.314]   
Смотреть страницы где упоминается термин Структурное исследование органических веществ: [c.102]    [c.199]    [c.10]    [c.10]    [c.196]    [c.303]    [c.367]    [c.276]   
Смотреть главы в:

Структурная рефрактометрия -> Структурное исследование органических веществ

Структурная рефрактометрия Издание 2 -> Структурное исследование органических веществ




ПОИСК





Смотрите так же термины и статьи:

Органические вещества, исследование

Структурные исследования



© 2025 chem21.info Реклама на сайте