Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный магнитный момент различных ядер

    Ядерный магнитный резонанс. Ядра атомов обладают механическим моментом количества движения. Благодаря наличию заряда в ядре это вращение вызывает появление магнитного момента отношение магнитного момента к механическому называется гиромагнитным отношением. Ядра, имеющие магнитный момент, ведут себя в магнитном поле аналогично маленьким магнитам, и, следовательно, при этом должно происходить расщепление энергетических уровней. Магнитные моменты ядер невелики, они гораздо меньше магнитных моментов электронов. У водорода (протона) и фтора магнитные моменты ядер больше, чем у других элементов, и поэтому исследования ЯМР часто проводят, изучая поведение ядер водорода или фтора в различных соединениях. Явление ядерного магнитного резонанса позволило сделать очень важные выводы относительно структуры молекул, взаимного влияния атомов в молекуле, действия растворителя на растворенное вещество и т. д. Этот метод относится к самым тонким средствам исследования структуры молекул. [c.65]


    Величина магнитного момента всех ядер одного изотопа строго одинакова и поэтому на первый взгляд кажется, что в спектре должна присутствовать только одна линия поглощения. На самом деле это не так. Кроме внешнего магнитного поля, в любой молекуле имеются внутренние поля, обусловленные движением электронов. В зависимости от положения, которое занимает данный атом и его ядро в молекуле, оно окажется в определенном внутреннем поле. Поэтому для ядер, находящихся в молекуле в различных положениях, условие резонанса будет наступать при различных значениях внешнего поля в зависимости от того вклада, который вносит в данном месте внутреннее поле. Этот вклад очень мал обычно внутренние поля примерно в миллион раз слабее внешнего. Однако современные спектрометры ядерного магнитного резонанса имеют очень высокую разрешающую способность и дают отдельные линии поглощения для ядер, которым соответствует разница в напряженности внутренних полей, меньшее одной стомиллионной доли от напряженности внешнего поля. [c.343]

    Магнитный момент у атомов или молекул может быть обусловлен круговыми токами в электронной оболочке и неспаренным электронным спином. Вещества, которые обладают магнитными моментами такого рода, называются парамагнитными. В молекулах различных веществ, в том числе в большинстве полимеров, электронный парамагнитный момент скомпенсирован. Такие вещества называются диамагнитными. Однако атомные ядра, например водорода и фтора, обладают собственными магнитными моментами, связанными с их спинами. Поэтому в диамагнитных веществах поглощение энергии электромагнитного поля может осуществиться только магнитными моментами ядер. Магнитные моменты атомных электронов на три порядка больше, чем ядерные магнитные моменты, поэтому резонансные частоты при магнитном резонансе па электронах значительно выше, чем резонансные частоты на ядрах, что определяет для этих методов различие радиотехнических схем. [c.211]

    До сих пор, знакомясь с оптической спектроскопией, мы имели дело с дискретными уровнями энергии, расстояние между которыми определяется исключительно внутренним строением вещества. Наряду с такими методами исследования существуют спектроскопические методы, изучающие переходы между дискретными уровнями энергии, положение которых зависит от магнитного поля, приложенного к образцу. Не только электроны, но и ядра некоторых атомов имеют собственный магнитный момент, обусловленный наличием ядерного спина. Различные ориентации ядерного магнитного момента по отношению к внешнему магнитному полю отвечают разным энергиям системы. Переходы между такими квантованными уровнями изучает спектроскопия ядер ного магнитного резонанса. Переходы между уровнями, обусловленными разными положениями электронного магнитного момента в парамагнитных веществах по отношению к магнитному полю, являются предметом электронного парамагнитного резонанса (ЭПР). Методы спектроскопии ЯМР и ЭПР имеют много общего близкая физическая природа возникновения спектров и одинаковые принципиальные схемы приборов. Однако далее мы ограничимся рассмотрением только ядерного магнитного резонанса как более универсального метода, нашедшего в настоящее время широчайшее применение в химии. Наиболее часто спектры ЯМР получают на ядрах Н, Р, С, "В, О, Практически в любом соединении можно найти ядра, дающие информативный спектр ЯМР, более того, спектры одного и того же соединения, снятые на нескольких разноименных ядрах, дают особенно богатую информацию. [c.469]


    Рассмотрим соединение, молекула которого содержит ядро со спином и соответствующим магнитным моментом. В отсутствие внешнего поля магнитные моменты ядер ориентированы хаотично и все ядра занимают состояния с равной энергией. При наложении магнитного поля ядра могут занять различные энергетические уровни в зависимости от дозволенных значений ядерного спинового квантового числа mj и в соответствии с определенными ориентациями по отношению к магнитному полю. Простейшим случаем является такое ядро, как протон, у которого спин I равен V2 тогда Mi должно быть либо -f /2, либо —В таком случае имеются только две дозволенные ориентации по отношению к полю, а именно когда составляющая ядерного момента количества движения в направлении поля равна + /г (/г/2п) и —1/2 (/г/2л). Соответственно составляющая ядерного магнитного момента, направленная вдоль поля, которая связана с моментом количества движения, может принимать только два значения -f x и — л. Точная их величина рассматривается ниже. Поле влияет на энергии ядер в этих двух ориентациях в поле с напряженностью Н они отличаются от значения при нулевом ноле на — хЯ и - - jlH. Таким образом, имеются два энергетических уровня с разностью энергий 2 iH (рис. 48). Устанавливается равновесное распределение ядра распределяются между двумя уровнями по закону Максвелла — Больцмана , так что имеется небольшой избыток ядер в нижнем энергетическом состоянии .  [c.220]

    Атомные ядра, обладающие собственным магнитным моментом, в постоянном магнитном поле прецессируют вокруг направления приложенного поля. Частота прецессии зависит от ядерного магнитного момента, напряженности поля и спинового квантового числа ядра. Идентичные атомы в химически различных молекулах не прецессируют с одинаковой частотой, даже если они помещены в одно и то же внешнее поле. Этот эффект, наблюдающийся при большом разрешении, связан с тем, что валентные силы, действующие на атом, различны в разных молекулах, т. е. зависят от величины и симметрии поля окружающих атомов. Следствием этого является различная степень магнитного экранирования атомов, приводящая к сдвигу резонансной частоты в зависимости от химического окружения — так называемому химическому сдвигу. Методом химического сдвига было подтверждено, например, что молекула этилового спирта содержит три различных вида атомов водорода три [c.102]

    Любое ядро с / > О может давать ЯМР-спектр. Некоторые свойства ядер элементов, иногда представляющих интерес для химиков-органиков, приведены в табл. 3-3. В ней указаны частоты (в Мгц), при которых ядра обнаруживают магнитный резонанс виоле 14092 э. Эти величины отвечают частотам радиочастотных генераторов, необходимых для изучения таких ядер. Очевидно, что для исследования спектров магнитного резонанса ядер, перечисленных в таблице 3-3, необходимы различные генераторы. Величина ядерного магнитного момента определяет резонансную энергию ядерного перехода. Спиновое число I указывает число ориентаций 21 + 1), которое ядро может принимать в магнитном поле. [c.147]

    Структурные данные можно получить также методами, которые используют энергии в радиочастотной области. К ним относится ядерный магнитный резонанс (ЯМР), ядерный квадруполь-ный резонанс (ЯКР) и электронный парамагнитный резонанс (ЭПР). Ядра, которым присущ магнитный момент, могут существовать в различных квантовых состояниях при наложении внешнего магнитного поля. Явление ядерного магнитного резонанса состоит в переходах между энергетическими уровнями, соответствующими различным ориентациям ядерных магнитных моментов по отношению к внешнему полю. Разность между энергиями квантованных состояний очень мала и лежит в области частот от 10 до 60 Мгц (т. е. в области длин волн от 30 до 5 м). Так как поле, которое определяет разность в энергиях, зависит от распределения электронов вокруг ядра, то изменения в этом распределении вследствие изменения связи или молекулярного окружения вызывают сдвиги положений резонансных пиков, называемые химическими сдвигами. Они и дают информацию о структуре молекулы. [c.293]

    Существуют и другие факторы, осложняющие характер резонансных взаимодействий. Молекулы, в которых имеются различные типы магнитных ядер, часто дают спектры ЯМР, по которым видно, что магнитные моменты различных ядер взаимодействуют друг с другом, причем характер этого взаимодействия по-прежнему зависит от окружения ядра. Точно так же в молекулах, обладающих неспаренными электроном и магнитными ядрами, часто существуют электронно-ядерные взаимодействия, которые в принципе можно исследовать как методом ЯМР, так и методом ЭПР. Молекулы, имеющие два или несколько неспаренных электронов, дают более сложные спектры вследствие электрон-электронных взаимодействий. [c.24]


    Если ядро с квадрупольным электрическим моментом (ядерный спин 7 1 см. разд. 7.2 и рис. 7.1) находится в неоднородном электрическом поле, являющемся следствием асимметрии электронного распределения, то может возникнуть градиент электрического поля (см. ниже). Квадрупольное ядро будет взаимодействовать с этим градиентом электрического поля в различной степени в зависимости от различных возможных ориентаций эллиптического квадрупольного ядра. Поскольку квадрупольный момент возникает в результате несимметричного распределения электрического заряда в ядре, нас будет больше интересовать электрический квадрупольный момент, нежели магнитный момент. Число разрешенных ядерных ориентаций определяется ядерным магнитным квантовым числом т, которое принимает значения от -(- / до — 1 (всего 27 -Ь 1). Низший по энергии уровень квадруполя соответствует ориентации, для которой наибольшая величина положительного ядерного заряда располагается ближе всего к наибольшей плотности отрицательного заряда в электронном окружении. Разности энергий различных ориентаций не очень велики, и при комнатной температуре в группе молекул существует распределение ориентаций. Если электронное окружение ядра является сферическим (как в С1 ), то все ядерные ориентации эквивалентны и соответствующие энергетические состояния квадруполя вырождены. Если сферическим является ядро (/ = О или 1/2), то энергетических состояний квадруполя не существует. В спектроскопии ЯКР мы изучаем разности энергий невырожденных ядерных ориентаций. Эти разности энергии обычно соответствуют радиочастотному диапазону спектра, т.е. от 0,1 до 700 МГц. [c.260]

    Зависимость мощности максимумов от атомных номеров. Как электронная плотность атома, так и его электростатическое поле возрастают симбатно с ростом атомного номера. Поэтому в обоих методах (РСА и ЭСА) исследователь сталкивается с затруднениями, когда требуется различить атомы с близкими атомными номерами. Ядерная плотность не является симбатной функцией атомного номера. Атомы, соседние в периодической таблице, например Ре, Со и N1, дают в Фурье-синтезах максимумы, совершенно различные по высоте. Особенно удобен НСА для установления позиций самых легких атомов материи — атомов водорода, фиксация которых в случае РСА не всегда возможна, а точность определения координат заведомо низка. Кроме того, дифракция нейтронов зависит от спиновых магнитных моментов ядер. Для потока нейтронов ядра одного и того же элемента, не совпадающие по ориентации спинового момента, являются разными ядрами. Поэтому НСА широко используется для решения специальных задач, таких, как анализ упорядоченности сплавов, образованных металлами с близкими атомными номерами анализ магнитной структуры кристалла выявление и уточнение координат атомов водо- [c.127]

    Физика и механика полимеров широко использует идеи и методы физики твердого тела, физики жидкого состояния, термодинамики и статистической физики. Так, например, и физику твердого тела, и физику полимеров интересует связь между физическими свойствами и строением веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, из которых можно выделить ряд важнейших подсистем (решетка, атомы с соответствующими электрическими квадрупольными и магнитными моментами ядер, электроны и ядра с соответствующими спинами, фононы, атомные группы, сегменты, макромолекулы и др.). Хотя указанные подсистемы связаны между собой, различные силовые поля (механические, электрические и магнитные) воздействуют на них не одинаково. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонансов (ЭПР и ЯМР), диэлектрическими и ультразвуковыми методами. [c.9]

    Электронное окружение квадрупольного ядра в молекуле, не обладающее сферической симметрией, создает неоднородное электрическое поле, которое характеризуется градиентом напряженности электрического поля на ядре (рис. IУ.2). Имеет место взаимодействие ядра, обладающего электрическим квадрупольный моментом eQ с градиентом поля ед. Энергия этого взаимодействия зависит от ориентации эллипсоидального квадрупольного ядра относительно системы главных осей тензора градиента электрического поля, а ее мерой является константа квадрупольного взаимодействия Аналогично тому как квантуется энергия вращающегося электрона в поле положительного ядра, квантуется и энергия квадрупольного взаимодействия. Иными словами, возможны различные квантованные ориентации ядерного квадрупольного момента и соответствующие квадруполь-ные уровни энергии. Эти уровни присущи данной молекулярной системе, т. е. являются ее свойством, в отличие от зеемановских уровней ядер и электронов в спектроскопии ЯМР и ЭПР, которые появляются при воздействии внешнего магнитного поля. Разности энергий, как и сами энергии квадрупольного взаимодействия, зависящие от электрического квадрупольного момента ядра eQ и градиента неоднородного электрического поля е , невелики, и переходы соответствуют радиочастотному диапазону 1(И, 10 Гц, Прямые [c.90]

    Разделенные изотопы также находят применение в спектроскопии и в физике твердого тела [1169]. Разницы в массах изотопов вызывают колебательные и вращательные изотопные эффекты в молекулярных спектрах. Разнообразные интересные спектроскопические эффекты вызваны разницей в значениях ядерного спина, магнитного момента и электрического квадрупольного момента для различных изотопов. Изучение этих эффектов очень трудно и иногда невозможно без наличия образцов, сильно обогащенных определенным изотопом. Исследование изотопных сдвигов в оптических спектрах атомов [670, 1170, 1847] дает возможность получить информацию о распределении заряда в ядрах различных изотопов и, следовательно, о размере, форме и структуре ядра. Многие из объемных свойств твердых тел зависят от масс атомов, и хотя эти эффекты малы и трудноопределимы, они изучались при рассмотрении электрической проводимости, температуры плавления, удельного объема, удельной теплоемкости и термоэлектродвижущей силы [1346]. Исследование в области сверхпроводимости показало, что критическая температура обратно пропорциональна атомной массе [ИЗО]. Методом дифракции рентгеновских лучей было рассмотрено различие кристаллических решеток LiF и LiF. Оказалось, что решетка LiF меньше на коэффициент 1,0002. Образцы разделенных изотопов нашли применение в качестве источников излучения. Они могут быть использованы для получения монохроматического излучения и, таким образом, пригодны в качестве эталонов длин волн и точного измерения длины. [c.462]

    Радиочастотная область спектра в сочетании с магнитным полем используется в методе ядерного магнитного резонанса (ЯМР). ЯМР наблюдается у веществ, содержащих атомы, ядра которых обладают магнитным моментом (ядра и др.). В спектроскопии ЯМР образец вещества помещают между полосами магнита и подвергают радиочастотному облучению. При определенной частоте облучения и напряженности магнитного поля наблюдается резонансное поглощение энергии, которое может быть обнаружено. Ядра атомов, имеющие различное химическое и магнитное окружение, дают сигнал при различных значениях приложенного магнитного поля. По положению и интенсивности сигналов в спектре ЯМР судят о строении [c.213]

    Выше было сделано предположение, согласно которому время, необходимое для выстраивания спинов в магнитном поле или для нарушения их ориентации при снятии поля, мало. Эти быстрые процессы называются процессами релаксации и характеризуются временем релаксации, определенным в разд. 10.2. Релаксация ядерных спинов определяется двумя различными процессами. В процессе спин-решеточной релаксации (время релаксации Т,) избыточная спиновая энергия превращается в тепловую энергию решетки. Под решеткой понимается окружение спинов. Колебательные, вращательные и поступательные движения атомов и молекул решетки вызывают появление флуктуирующего магнитного поля на ядре или неспаренном электроне. Это поле, обусловленное магнитными моментами ближайших атомов и молекул, имеет компоненты с частотой, необходимой для индуцирования переходов между состояниями аир. Величина Тг может быть определена в эксперименте со спиновой системой, выведенной из равновесного состояния действием внешнего электромагнитного поля, путем снятия поля и измерения времени, за которое отклонение заселенности уровней от их равновесных значений уменьшается в е раз. Значение Т1 изменяется от 10 до 10 с для твердых тел и от 10-- до 10 с для жидкостей. [c.503]

    В магнитном поле Но, вследствие неравномерной заселенности энергетических уровней, соответствующих различным ориентациям магнитного момента ядра, образец оказывается намагниченным, и его состояние может быть охарактеризовано вектором ядерной макроскопической намагниченности М. Если в какой-либо момент времени этот вектор занимает произвольное положение в пространстве, например из-за возмущения, то в последующий момент времени целый ряд ре- [c.145]

    Если число протонов и нейтронов четное, то магнитный момент во всех без исключения случаях равен нулю если эти числа нечетны, он равен целой величине, а если только одно число нуклонов нечетно — полуцелой величине. Все это обусловлено тем, что протоны и нейтроны, находясь в атомном ядре в различных сочетаниях, определяют такую структуру ядра, при которой ядерные спины взаимно компенсируются, что имеет важное значение для понимания структуры атомного ядра. [c.51]

    Так, при / = 7г магнитное квантовое число может принимать значения + 72 и —7г, при 1=1 — значения 1, О и —1 и т. д. В общем случае возможны 2/+1 ориентации, или состояния, ядра. В отсутствие магнитного поля всем этим состояниям соответствует одно значение энергии. Если же ядро помещено в однородное магнитное поле Яо, то этим состояниям отвечает различная потенциальная энергия. Для ядра со спином возможные значения от=+7г и пг =—описывают состояния, когда магнитный момент ядра направлен, соответственно, по направлению и против направления приложенного магнитного поля Яо, причем последней ориентации отвечает большая потенциальная энергия. Обнаружить переходы магнитных ядер (или, как часто говорят, спинов ) между такими состояниями можно с помощью явления ядерного магнитного резонанса. [c.14]

    Ядра различных элементов отличаются своим ядерным спином. 13се ядра с четным числом протонов и нейтронов имеют ядерный спин / = 0 и поэтому не обнаруживают ядерного парамагнитного резонанса. В наибольшей степени резонанс проявляется в ядрах с /= /2 и большим магнитным моментом, а именно в нуклидах Н, F, имеющих сравнительно большое значение гиромагнитного отношения g. [c.72]

    Ядро со спином"/ может иметь (2/ 1) ориентаций относительно внешнего поля (см. стр. 50). Хотя принцип ядерного магнитного резонанса в случае такого ядра остается тем же самым, как для протона, общие характеристики спектра и тонкая структура оказываются значительно более сложными. Положение особенно осложняется, когда молекула содержит несколько различных ядер со спинами. Дополнительные осложнения состоят в том, что все ядра со спином больше /2 имеют ядерные квадру-польные моменты (см. ниже). Эти моменты взаимодействуют со спинами, приводя к дальнейшему расщеплению ядерных уровней энергий и появлению дополнительных линий в спектре ЯМР. [c.356]

    Магнитные Р. я, обусловлены установлением статистич. равновесия в системе магнитных моментов, связанных с полимерным веществом. Носители магнитных моментов могут иметь различную природу (электроны, обладающие собственными и орбитальными магнитными моментами ядра атомов, обладающие собственными магнитными моментами) и взаимодействовать друг с другом, поэтому магнитные Р. я. болео сложны и разнообразны но сравнению с электрич. Р. я. (см. Ядерный магнитный резонанс, Электронный парамагнитный резонанс, Ядерный квадрупольный резонанс). [c.165]

    Спектры ядерного магнитного резонанса (высокого разрешения). Ядра элементов, имеющие магнитный момент ( Н, С, и др.), поглощают в магнитном поле радиочастотное излучение. Поглощаемая энергия расходуется на изменение ориентации спинов ядер в магнитном поле. Магнитно симметричные ядра ( С, Ю, и т. д.) в этих условиях энергию радиочастотного излучения не поглощают Различные по химическому окружению ядра Н или других атомов поглощают энергию в несколько отличающемся по напряжению поле или, при постоянном напряжении, несколько отличающиеся по частоте радиочастотные колебания. В результате измерения поглощаемой энергии с разверткой по напряжению поля или по частоте получается спектр ЯМР вещества, в котором магнитно несимметричные ядра характеризуются определенными сигналами — химическими сдвигами . Химические [c.20]

    Подстановка величин и Ш в это уравнение позволяет воспроизвести энергии, приведенные на рис. 9.2,Г. Для ядра с произвольным ядерным спином проекция ядерного магнитного момента на направление эффективного поля на ядре может принимать любое значение 2/ + 1, соответствующее квантовым числам 1, -Л- 1,. .., /- I, I. Эти ориентации приводят к 2/ -I- 1 различным ядерным энергетическим состояниям (одному для каждого значения Ш/), и если каждое из них взаимодействует с электронным моментом, в спектре ЭПР появляются 21 + 1 линий. Поскольку различия в энергиях малы, будем считать, что все уровни с одной и той же величиной т, заселены пдиняково. а линии поглощения ЭПР имеют равную интенсивность и удалены друг от друга на одинаковое расстояние. Например, для неспаренного электрона где 1 = 1, ожидаются три полосы. [c.17]

    Напряженность индуцированного вторичного ноля и, следовательно, значение постоянной экранирования а определяется. характером электронного окружения данного ядра. Поэтому поглощение энергии переменного поля веществом, молекулы которого содержат набор неэквивалентных атомов одного элемента, происходит при различных значениях напряженности внешнего поля Иг, (при условии, что частота переменного поля I фиксирована). В результате наблюдается спектр поглощения, каждый сигнал которого отвечает определенному положению ядра в молекуле. Такие спектры присущи только жидко му и газообразному состоянию диамагнитного вещества, где вследствие быстрого теилового движения молекул происходит усреднение прямого диполь-дипольного взаимодействия ядерных магнитных моментов. Благодаря усреднению этого взаимодействия ширина сигналов ЯМР достаточно мала по сравнению с различием в экранировании неэквивалентных ядер. [c.376]

    В качестве простейшего примера выберем ядро водорода — протон. Протон обладает собственным механическим моментом спином 8 и соответствующим собственным магаитным моментом т. Другами словами, протон можно рассматривать, как маленький магнит с северным и южным полюсами. Магнитный момент протона пропорционален его механическому моменту, и их отношение ( гиромагнитное отношение ) s/m, обозначаемое обычно 7, является размерной константой. Значение ядерного магнитного момента протона в определенных единицах (точное значение для нас не важно) равно V2 (так называемое спиновое квантовое число). В магнитном поле т и, соответственно, s могут иметь различные проекции на выбранную ось координат, например, тп и s . Эти величины также квантуются и для протона могут иметь только следующие значения т, = s/t = % г = /2- [c.45]

    Спин Na I равен Это доказано измерениями Раби и Коена при помощи модификации опытов Штерна—Герлаха, а также Иоффе и Юри по чередованию интенсивностей в полосатых спектрах и точными измерениями Гранатом и Ван Атта ) интенсивностей сверхтонкой структуры. Таким образом, в случае этого ядра мы имеем три различных метода, приводящих к тому же самому значению. Определение ядерного магнитного момента из наблюденных расщеплений, конечно, гораздо более трудная и неопределенная задача. Значение I определяется из интенсивностей компонент сверхтонкой структуры при помощи применения правила сумм очевидно, что теория интенсивностей компонент рессел-саундерсовского мультиплета (раздел 2 гл. IX) приложима, если заменить в ней J на F, 5 на J и L на /. Поэтому при расщеплении линии уровня отношение интенсивностей ДВУХ компонент равно / (/-[-1), что является отношением значений 2F- -l при F=— l и F = /4-V2- [c.402]

    Метод ЯМР заключается в следующем. Ядра некоторых атомов, в том числе и водорода (протона), обладают собственным моментом количества движения — ядерньш спином, который характеризуется спиновым квантовым числом /. При вращении заряженного ядра возникает магнитное поле, направленное по оси вращения. Другими словами, ядро ведет себя подобно маленькому магниту с магнитным моментом рц. Магнитный момент квантуется, т. е. ядро с ядерным спиновым числом / может ориентироваться во внешнем однородном магнитном поле На различными способами, число которых определяется магнитным квантовым числом т/. Каждой такой ориентации ядра соответствует определенное значение энергии. Ядра некоторых элементов, имеющих спиновое квантовое число I = = /а ( Н, зф), во внешнем магнитном [c.146]

    В связи с различными возможностями ориентации ядра А под влиянием магнитного -момента ядра В со спином / линия ядра А расщепляется на мультиплет (2/+1). В присутствии п эквивалентных соседних ядер с ядерным спином I число состояний становится равным 2/г/+1. Распределение интенсивности линий зависит от статистического распределения ядерных спиновых состояний и для ядер с /= /2 соответствует последовательности биномиальных коэффициентов. В качестве примера рассмотрим сверхтонкую структуру спектра молекулы РРз. Резонансная линия ядра Р под влиянием соседного ядра Р со спином /2 расщепляется на две линии (рис. А.27, а). Резонансная линия ядра фосфора под действием трех одинаковых ядер P со спином /= /2 дает квартет с отношением интенсивностей 1 3 3 1 (рис. А.27, б). [c.73]

    Привлекательная особенность ЯМР-спектроскопии состоит в том, что исследуемая молекула в целом прозрачна это позволяет беспрепятственно исследовать выбранный простой класс ядер, обладающих магнитными свойствами. Область протонного резонанса не будет содержать пиков, обусловленных какими-либо другими атомами в молекуле, так как, даже когда эти атомы магнитны, их линии поглощения смещены на расстояния, огромные по сравнению с диапазоном спектра протонного резонанса. Атомы углерода и кислорода, образующие скелет молекулы, вообще не дают самостоятельного эффекта. Присутствие других магнитных ядер (например, азота, фтора, фосфора, дейтерия) иногда сказывается на спектрах протонного резонанса, но только в виде нарушения положений пиков нли их множественности, но эти эффекты, как правило, носят предсказуемый Зсарактер. Ядра других галогенов (хлора, брома и иоДа), хотя и обладают магнитными свойствами, не оказывают влияния на множественность пиков протонного резонанса, так как электрическое поле, обусловленное ядерным квадрупольным моментом, взаимодействует с окружающими полями и изменяет ориентацию ядерного спина настолько быстро, что суммарный эффект его действия на соседние протоны сводится к нулю. Таким образом, ЯМР-спектроскопию чаще всего применяют в органической химии в тех случаях, когда требуются данные о числе водородных атомов различных типов в молекуле, а также об их взаимодействии между собой и с другими атомами, входящими в состав молекулы. Как и следовало ожидать, самые простые спектры обычно дают соединения с небольшим числом типов водородных атомов. Большие молекулы, обладающие низкой симметрией, как правило, дaюt довольно сложные спектры, но даже в этом случае удается получить ценные данные, не проводя полного анализа спектра ЯМР и не идентифицируя все пики. [c.257]

    Возможность наблюдения ядерного магнитного разонанса основана на поглощении или испускании энергии при переходах ядра между различными спиновыми уровнями (зеемановские уровни). Атомное ядро можно представить в виде сплошного шара, содержащего электрически заряженные частицы, которые совершают орбитальное движение. Вращение заряженных частиц индуцирует магнитный момент ядра, и ядро в результате может взаимодействовать с внешним магнитным полем. Если вещество, содержащее атомное ядро с магнитным моментом х и ядерным спином /, поместить в однородное магнитное поле Я, то оно займет один из (2/ -Ь 1) зеемановских уровней. Различия локальных магнитных полей, магнитных моментов и ядерных спинов влияют на положение этих уровней и, следовательно, на спектр ЯМР. [c.456]

    Консганта спин-спинового взаимодействия J характеризует энергию косвенного спин-спинового взаимодействия ядер через электронные пары, образующие химические связи между атомами. Спин-спиновое взаимодейсгвие приводит к расщеплению сигналов в спектре с образованием мультиплетов Причина расщепления сигнала данного ядра состоит в том, что на него действует дополнительное поле, создаваемое магнитными моментами ядер соседней группы. Практически ядерный спин будет взаимодействовать со всеми возможными спиновыми состояниями соседних ядер, и число линий в мультиплете будет определяться 2пх / + где п — число ядер X со спином х- Относительные интенсивности отдельных компонентов мулыиплета отвечают статистическим весам различных комбинаций спинов. [c.252]

    Ясно, что и для электрона, и для ядер различным спиновым состояниям соответствуют разные проекции магнитного момента Цег и nnz следовательно, магнитные энергии электрона и ядер ЦегН и ЦпгЯ в магнитном поле Н разные в различных спиновых состояниях. Магнитные энергии спиновых состояний называются зеема-новскими энергетическими уровнями этих состояний. Напомним, что на регистрации переходов между электронными спиновыми состояниями (т. е. между электронными зеемановскими уровнями) основан метод электронного парамагнитного резонанса (ЭПР). Переходы между ядерно-сниновыми состояниями (и ядерными зеемановскими уровнями) фиксируются методом ядерного магнитного резонанса (ЯМР). Эти переходы сопровождаются изменением проекции спина и индуцируются переменными магнитными полями на частоте прецессии электронов или ядер. Переменные поля могут быть приложены извне (как в ЭПР или ЯМР), или создаваться молекулярным движением. Движение молекул окружающей среды (решетки) хаотично и создает случайные магнитные поля разных частот и амплитуд ( белый шум ), однако всегда имеется компонента этого шума на частоте прецессии электрона или ядра, которая индуцирует переходы между спиновыми состояниями. [c.12]


Смотреть страницы где упоминается термин Ядерный магнитный момент различных ядер: [c.197]    [c.46]    [c.404]    [c.395]    [c.279]    [c.197]    [c.190]    [c.197]    [c.131]    [c.282]    [c.190]    [c.137]    [c.366]    [c.874]    [c.413]   
ЯМР высокого разрешения макромолекул (1977) -- [ c.29 ]

ЯМР высокого разрешения макромолекул (1977) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Магнитный момент

Момент ядерный



© 2025 chem21.info Реклама на сайте