Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейтроны энергия связи

    Дефект массы характеризует устойчивость атомных ядер и энергию связи нуклонов в ядре. Дефект массы соответствует энергии, которая выделяется при образовании ядра из свободных протонов и нейтронов и может быть вычислена из соотношения Эйнштейна Е — тс , где Е — энергия т — масса, с — скорость света в вакууме (с = 3-10 м/с). [c.9]


    Атомные ядра включают N нейтронов и Z протонов. Параметры и свойства атомных ядер влияют на протекание химических процессов, так как масса, заряд, энергия связи, устойчивость и ядерный спин ядра в значительной мере определяют свойства атома в целом. Отметим прежде всего, что с помощью масс-спектроскопических методов можно обнаружить разность ме кду массой ядра и массой, найденной простым суммированием масс составляющих его нуклонов, — так называемый дефект массы Ат. Энергетический эквивалент дефекта массы представляет собой энергию связи нуклонов в ядре. Ат = = 1,0078 Z+1,0087 N —т. Для ядра гелия Ат = 0,03 а. е. м., что соответствует 27,9 МэВ. Энергия связи ядра химического элемента приблизительно линейно зависит от массового числа A=--Z- -N. Если построить график зависимости средней энергии связи па один нуклон от массового числа, наблюдается максимум при средних значениях массового числа. Таким образом, ядра со средним массовым числом более устойчивы, чем тяжелые или легкие. Следует отметить, что тяжелые ядра богаче нейтронами, чем легкие. При Z>84 уже не существует стабильных ядер. Различают следующие виды ядер изотопы (равные Z, неравные N), изотоны (неравные Z, равные N), изобары (неравные Z, неравные N, равные А), изомеры (равные Z и N, однако внутренняя энергия неодинакова). Для нечетных А имеется лишь одно стабильное ядро, а для четных — несколько стабильных ядер изобаров (правило изобар Маттауха). [c.34]

    Вторая основная характеристика атома — массовое число, равное сумме чисел протонов и нейтронов в ядре. Массовое число близко по величине к массе атома, выраженной в атомных единицах. Это получается в результате компенсирующего влияния двух факторов. С одной стороны, массы нуклонов (а. е. м.), как видно из табл. 1, несколько превышают единицу (на величину порядка 0,008). С другой стороны, происходит примерно такое же уменьшение массы в расчете на один нуклон при слиянии нейтронов и протонов в атомное ядро. Это уменьшение, известное как дефект массы, в соответствии с законом об эквивалентности массы и энергии (1.23) определяет энергию связи атомного ядра, т. е. энергию, которую необходимо затратить для полного расщепления ядра на составляющие его протоны и нейтроны. Например, энергия связи ядра гелия составляет 28,2 МэВ (28,2 млн. электрон-вольт или мегаэлектрон-вольт), В соответствии с уравнением (1.23) дефект массы при образовании ядра гелия составляет [c.24]


    Вторая основная характеристика атома — массовое число, равное сумме числа протонов и числа нейтронов в ядре. Массовое число близко по величине к массе атома, выраженной в атомных единицах. Это получается в результате компенсирующего влияния двух факторов. С одной стороны, массы нуклонов (а. е. м.), как видно из табл. 1, несколько превышают единицу (на величину порядка 0,008). С другой стороны, примерно такое же уменьшение массы в расчете на один нуклон происходит при слиянии нейтронов и протонов в атомное ядро. Это уменьшение,- известное как дефект массы, в соответствии с законом об эквивалентности массы и энергии (1.23) определяет энергию связи атомного ядра, т. е. энергию, которую необходимо затратить для полного расщепления ядра на составляющие его про- [c.20]

    Доказано, что в случае реакции, вызванной нейтроном, энергия связи нейтрона представляет большую (если не всю) часть этой энергии возбуждения. Однако, если даже массовые числа легко делящихся ядер отличаются мало, энергия связи может изменяться почти на 50%, отсюда и различие в способности делиться отдельных ядер. Это относительно большое изменение объясняется влиянием четно-нечетного члена в формуле для массы ядра. Если М А, 2) — масса ядра, содержащего А нуклонов, из которых 2 — протоны, то в атомных единицах массы [4] [c.11]

    Полная масса атома называется его атомной массой и приблизительно равна сумме масс всех протонов, нейтронов и электронов, входящих в состав атома. Когда из протонов, нейтронов и электронов образуется атом, часть их массы превращается в энергию, которая выделяется в окружающую среду. (Этот дефект массы и есть источник энергии в реакциях ядерного синтеза). Поскольку атом невозможно разделить на составляющие его элементарные частицы, не подводя к нему извне энергию, которая эквивалентна исчезнувшей массе, эта энергия называется энергией связи атомного ядра. [c.18]

    Дефект массы характеризует устойчивость атомных ядер и энергию связи нуклонов в ядре. Дефект массы соответствует энергии, которая выделяется при образовании ядра из свободных протонов и нейтронов и может быть вычислена из соотношения Эйнштейна [c.40]

    Стабильные и радиоактивные изотопы. В настоящее время известно около 280 стабильных изотопов, принадлежащих 81 природному элементу, и более 1500 радиоактивных изотопов, 107 при родных и синтезированных элементов. При этом у элементов с нечетными I не более двух стабильных изотопов. Число нейтронов в таких атомных ядрах, как правило, четное. Большинство элементов с четным 2 характеризуется несколькими стабильными изотопами, из которых не более двух с нечетными А. Наибольшее число изотопов имеют олово (10), ксенон (9), кадмий (8) и теллур (9). У многих элементов по 7 стабильных изотопов. Такой широкий набор стабильных изотопов у различных элементов связан со сложной зависимостью энергии связи ядра от числа протонов и нейтронов в нем. По мере изменения числа нейтронов в ядре с определенным числом протонов энергия связи и его устойчивость к различным типам распада меняются. При обогащении нейтронами ядра излуч-ают электроны, т. е, становятся р -активными с превращением нейтрона в ядре в протон. При обеднении ядер нейтронами наблюдается электронный захват или р+-активность с превращением протона в ядре в нейтрон. У тя- [c.50]

    ХМ1-1-13. Рассчитайте дефект массы и энергию связи аО. Изотопная атомная масса О 15,99468 ат. ед. Массы протона и нейтрона 1,007277 и 1,008657 ат. ед. соответственно, а масса электрона 0,000549 ат. ед. ХП1-1-14. Масса покоя р-частицы 0,000549 ат. ед. Определите эффективную относительную массу, если р-частица движется со скоростью, равной 0,99 скорости света ХП1-1-15. Если пучок нейтронов с плотностью потока ф проходит сквозь поглощающую среду, то доля изменения плотности потока с1ф1ф в некоторой данной точке среды прямо пропорциональна длине пути с1х с1ф1ф= = Мос1х. N — число атомов мишени на 1 см среды, а а — микроскопическая площадь поперечного сечения. Покажите, что а может быть определена из графика зависимости пф от х. [c.148]

Рис. 23-1. Уменьшение массы и энергия связи в расчете на 1 нуклон при образовании ядер из электронов, протонов и нейтронов. Для всех элементов после кислорода полная энергия Рис. 23-1. Уменьшение массы и <a href="/info/5059">энергия связи</a> в расчете на 1 нуклон при образовании ядер из электронов, протонов и нейтронов. Для всех <a href="/info/1683950">элементов после</a> <a href="/info/1845988">кислорода полная</a> энергия
    Присоединяющиеся к ядру нейтроны вносят в образовавшееся составное ядро как свою кинетическую энергию, так и выделяющуюся при этом энергию связи. Последняя может быть в ряде случаев определена по энергии у-квантов, испускаемых в том случае, если присоединение нейтрона приводит к простой реакции [п, у), часто конкурирующей с реакцией деления, или может быть вычислена по полуэмпирической формуле для удельной энергии связи нуклона в ядре. При этом следует учесть, что в случае присоединения к ядру четного нейтрона энергия связи больше, чем при присоединении нечетного. Энергия связи нейтро- [c.185]


    Масса ядра всегда меньше суммы масс нуклонов, входящих в это ядро. Разность между массами ядра и нуклонов называется дефектом массы. Например, масса изотопа гелия равна 4,0015 атомной единице массы (а. е. м.), в то время как сумма масс двух протонов и двух нейтронов составляет 4,0319 а. е. м., соответственно дефект массы равен 0,0304 а. е. м. Дефект массы определяет устойчивость атомных ядер и энергию связи нуклонов в ядре. Он соответствует энергии, [c.32]

    Рассмотрим теперь для различных ядер дефект массы или энергию связи, отнесенную к одному нуклону (нуклоном обозначают как протон, так и нейтрон), которая определяется делением энергии связи ядра на полное число нуклонов. Если рассмотреть среднюю энергию нуклона как функцию массового числа, то окажется, что она максимальна для ядер, массовое число которых близко к 50. Следовательно, эти ядра наиболее устойчивы. Наконец, большая средняя энергия нуклона означает, что для распада ядра на элементарные частицы требуется очень большая энергия. Однако это не значит, что такое ядро не может спонтанно испустить частицу действительно, существуют ядра, которые спонтанно, без притока внешней энергии, превращаются с разными скоростями в другие ядра это — явление природной радиоактивности. Иные ядра, наоборот, спонтанно не распадаются, но при бомбардировке частицами соответствующей энергии могут превращаться в различные ядра таким образом осуществляются искусственные превращения, приводящие к устойчивым или неустойчивым ядрам. Рассмотрим последовательно эти два явления. [c.43]

    ТРИТИЙ (от феч. trv tos - третий) Т, или ]Н, радиоактивный тяжелый изотоп водорода с мае. ч. 3. Ядро атома Т.- тритон с массой 3,016050 состоит из одного протона и двух нейтронов, энергия связи 8,1-8,4 МэВ. При t-распаде Т. образуется [c.5]

    Ход г-процесса и соответствующие состояния ожидания определяются несколькими параметрами, такими как температура, плотность нейтронов, энергия связи и полупериод /3-распада. Чем выше плотность нейтронов, тем на более богатых нейтронами ядрах прекращается г-процесс, в то время как увеличение температуры даёт противоположный эффект. Поскольку энергия связи нейтронов входит экспоненциально в условие равновесия (п,7)-и (7, п)-процессов (3.5.4), эта энергия оказывает существенное влияние на состояние ожидания. Однако определение энергии связи требует знания массовой формулы для ядер, далёких от области стабильности и, по этой причине, недоступных в лабораторных условиях. Тем самым результат оказывается очень чувствительным к теоретической экстраполяции в эту область. [c.79]

    Согласно этому соотношению уменьшение массы на 0,030376 а. е. м. при образозании ядра гелия из двух протонов и двух нейтронов соответствует выделению огромного количества энергии в 28, 2 МэВ (1 МэВ = 10 эВ). Отсюда средняя энергия связи в ядре на один нуклон составляет примерно 7 МэВ. Энергия связи нуклонов в ядре в миллионы раз превышает энергию связи атомов в молекуле ( 5 эВ). Поэтому-то при химических превращениях веществ атомные ядра не изменяются. [c.9]

    Величина энергия, выделяющейся ири образовании данного ядра нз протонов и нейтронов, называется энергией связи ядра и характеризует его устойчивость чем больше величина выделившейся энергии, тем устойчивее ядро. [c.105]

    В первую очередь рассмотрим процессы неупругого рассеяния. Уже было отмечено, что при столкновении, которое сопровождается неупругим рассеянием, образуется составное ядро в возбужденном состоянии. Энергия возбуждения складывается из кинетической энергии падающего нейтрона и энергии связи этого нейтрона с ядром-мишенью. В случае легких ядер энергия возбужденного состояния составного ядра по энергетической шкале находится далеко от основного состояния — на расстоянии до 1 Мэе. Если масса бомбардируемой частицы большая, то первый уровень возбуждения располагается ближе к основному состоянию (от 10 до 100 кэв) и промежуточные состояния находятся па более близком расстоянии друг от друга, чем в легких ядрах [21. [c.48]

    Протоны друг от друга отталкиваются между протонами и нейтронами действуют силы притяжения (Гейзенберг), за счет которых происходит образование ядра. Силы взаимодействия частиц в ядре называются ядерными силами. Природа ядерных сил до настоящего времени остается недостаточно изученной и ясной. Однако можно рассчитать энергию взаимодействия или энергию связи ядерных частиц в ядрах. [c.44]

    Современное состояние науки о ядре и его структуре находится примерно в том же положении, в котором находилась теория строения атома в 1925 г. Имеется возможность проводить измерения свойств ядер, описывать и классифицировать их, но нет еще общей теории, позволяющей объяснить эти свойства. Ядра состоят из протонов и нейтронов, сосредоточенных в небольшом объеме и взаимодействующих сильнее всего лишь со своими непосредственными соседями по ядру. В некоторых отношениях (это касается энергии связи) они подобны спрессованным капелькам однородных частиц, но в других отношениях (предпочтительность четного числа нуклонов и существование магических чисел) они ведут себя так, будто образуют оболочечные структуры, подобные электронным оболочкам. Диаграммы энергетических уровней для ядер могут быть построены на основе спектров у-излучения, сопровождающего ядерные превращения. Ядра, подобно электронам в атоме, тоже имеют основные и возбужденные состояния. [c.435]

    Разность между полной энергией свободных протонов и нейтронов и полной энергией построенного из них ядра дает энергию связи  [c.42]

    Если обратить уравнение (20.27), то станет ясно, что для расщепления одного ядра гелия-4 на изолированные протоны и нейтроны потребуется энергия в 4,52-10 Дж. Таким образом, энергия, вычисленная по дефекту массы, является мерой устойчивости ядра к расщеплению на индивидуальньсе нуклоны. Энергию, необходимую для разложения ядра на протоны и нейтроны, называют энергией связи ядра. [c.261]

    Отсюда следует, что энергия связи протона и нейтрона в ядре дейтерия равна около 2,3 10 эв. [c.69]

    Вычислять энергии связи ядер, если задана их масса и массы протона и нейтрона. [c.275]

    Энергия связи между протоном и нейтроном в ядре атома дейтерия составляет 2,2 Мэе. Вычислить, сколько калорий понадобилось бы затратить на разложение грамм-атома, т. е. 6- 10 указанных ядер на отдельные протоны и нейтроны. [c.31]

    Масса ядра всегда меньше суммы масс нуклонов, входящих в это ядро. Разность между массами ядра и нуклонов называют дефектом массы. Например, масса изотопа гелия равна 4,0015 атомных единиц массы (а.е.м), в то время как сумма масс двух протонов и двух нейтронов составляет 4,0319 а.е.м., соответственно дефект массы равен 0,0304 а.е.м. Дефект массы определяет устойчивость атомных ядер и энергию связи нуклонов в ядре. Он соответствует энергии, которая выделяется при образовании ядра из протонов и нейтронов и может быть рассчитана по уравнению Эйнштейна  [c.399]

    Согласно уравнению (1.11) уменьшение массы на 0,0304 а. е. м. при образовании ядра гелия из двух протонов и двух нейтронов соответствует выделению энергии 28,2 МэВ. Соответственно средняя энергия связи в ядре на один нуклон равна примерно 7 МэВ. Энергия связи нуклонов в ядре в миллионы раз превышает энергию связи атомов в молекуле. [c.33]

    Образование ядра, системы очень устойчивой, из протонов и нейтронов, связывающихся ядерными силами притяжения, сопровождается выделением больших количеств энергии это энергия связи ядра. [c.42]

    Согласно этому уравнению, уменьшение массы на 0,0304 а.е.м. при образовании ядра гелия из двух протонов и двух нейтронов соответствует выделению энергии 4,52-10 Дж или 2,72-10 кДж на 1 моль ядер гелия. Соответственно средняя энергия связи в ядре гелия на 1 моль нуклонов составляет 6,8-10 кДж, т. е. в миллион раз превышает энергию связи атомов в молекулах. [c.399]

    D, стабильный изотоп водорода с мае. ч. 2, ат. м. 2,01416219. Ядро атома Д.-дейтрон состоит из одного протона и одного нейтрона, энергия связи между ними 2,23 МэВ. Поперечное сечение ядерной р-ции (п.у) 53-10 м , поперечное сечение захвата тепловых нейтронов дейтронами 15 10 м (для протонов 3-10 м ). Молекула двухатомна, длина связи 0,07417 нм осн. частота колебаний атомов 3118,46 см" энергия диссоциации 440 кДж/моль, константа диссоциации К = рЬ/Ро = 4,173-10 (293,15 К). С др. изотопами водорода Д. образует молекулы протодейтерия HD (мол. м. 3,02205) и дейтеротрития DT (мол. м. 5,03034). В прибрежной морской воде соотношение D/(D + Н) составляет (155-156)-10 , в поверхностных во-дах-(132-151)-10 , в прир. газе-(110-134)-10 . [c.16]

    Если определить разность между массой ядра (Я. м.) и массой составляющих его протонов и нейтронов (т = 1,00867, гпр = = 1,00728), то можно рассчитать энергию, которая выделилась при образовании ядра этого элемента, т. е. энергию связи протонов и нейтронов в ядре. Чем выше энергия связи, тем, естественно, выше устойчивость ядра. [c.222]

    Из соотношений (1.13) и (1.11) легко видеть, что составное ядро с четным числом протонов и нейтронов обладает наибольшей энергией возбуждения, так как член б отрицателен для этих ядер. Несколько меньшая по величине энергия возбуждения получается в составном ядре с нечетным числом нуклонов и наименьшая — в случае нечетно-нечетных ядер. Поэтому ядра изотопов и могут делиться нейтронами любых энергий, тогда как и делятся только быстрыми нейтронами. В случае первых трех ядер захват нейтрона приводит к четно-четной составной структуре и энергия возбуждения, обусловленная только энергией связи нейтрона ( 6,8 Мэе), равна порогу деления. Таким образом, эти ядра могут делиться как тепловыми (очень медленными), так и быстрыми нейтронами. Именно эги свойства дают возможность нспользовать такие ядра в качестве ядер-пого горючего. Ниже будет показано, что эти ядра настолько легко делятся нейтронами тепловой энергии, что целесообразнее замедлять нейтроны до тенлОБЫх энергий. Вооб1це вопрос о замедлении нейтронов является одним из основных вопросов теории реакторов. [c.11]

    ДЕЙТРОН (дейтой) — ядро атома одного из тяжелых изотопов водорода — дейтерия обозначается D , или (1 состоит из одного протона и одного нейтрона, энергия связи к-рых в Д,, равная 2,23 М.эв, значительно меньше энергпи связи ядерных частиц в других, более тяжелых ядрах собственный момент количества движения (спин) равен 1 магнитный момент равен 0,857348 ядерного магнетона. Будучи простейшей системой частиц, связанных ядерными силами, Д, представляет большой интерес для изучения природы этих сил, В качестве бомбардирующих частиц Д. широко используются в. чдерных реакциях, в частности в реакциях, служащих источником быстрых нейтронов. Химич. свойства ионов легкого и тяжелого водорода (протона и Д.) заметно различаются, что связано со значительным относительны.м различием в их массах и, следовате.льно, в нулевых энергиях (см. Водород, Дейтерий, Изотопные эффект ы). [c.527]

    Эти отношения определяют зависимость массы ядра, а следовательно, и его энергии связи от числа и типа содер/кащихся в нем нуклонов. Точное выражение для энергии связи нейтрона сп в составном ядре получается из равенства [c.11]

    В опытах с дейтеронами больших энергий также образуются изотопы элемента-мишени, но вылетающие частицы могут представлять собой как протоны, так н нейтроны. В этой области энергий ку-лоновское отталкивание не имеет существенногс значения и вероятности захвата протона и нейтрона близки. Другая частица при этом пройдет мимо ядра, испытав сравнительно небольшое ускорение в момент разрыва, так как ее кинетическая энергия намного больше энергии связи нуклонов в дейтерии. [c.419]

    К изомерам относятся такие ядра, которые имеют равные числа и нейтронов, и протонов Z = onst, N = onst), но неравные энергии связи ядер. [c.91]

    Энергии связи отдельных нуклонов в атомном ядре заметно различаются, особенно для легких ядер. При этом более устойчивы и распространены атомные ядра с четным числом протонов и нейтронов [четно-четные ядра). Атомные ядра с нечетным числом нуклонов менее устойчивы и распространены. К ним относятся ядра с четным 2 и нечетным N (четно-нечетные) или нечетным 2 и четным N (нечетно-четные). Наименьшей прочностью характеризуются атомные ядра с нечетным 2 и нечетным N (нечетно-нечетные). Известно всего четыре устойчивых нечетно-нечетных ядра lHe , зЫ , и зВ . Особой прочностью обладают атомные ядра, содержащие 2, 8, 20, 50, 82 и 126 протонов или нейтронов, например 2He вО , 2оСа °, 5оЗп 2°, д2РЬ2ов  [c.49]


Смотреть страницы где упоминается термин Нейтроны энергия связи: [c.400]    [c.527]    [c.515]    [c.409]    [c.8]    [c.11]    [c.418]    [c.21]    [c.49]    [c.20]    [c.38]   
Химия изотопов Издание 2 (1957) -- [ c.29 , c.31 , c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрон

Нейтрон энергия

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи



© 2025 chem21.info Реклама на сайте