Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Малоугловое рассеяние рентгеновских лучей

    Структура пор. В СУ имеются микро- и переходные поры. Их размеры определяются методом малоуглового рассеяния рентгеновских лучей по перепадам электронной плотности [8-32]. Обработка экспериментальных данных позволила получить следующие значения радиусов пор сферической формы в зависимости от температуры обработки. [c.491]


    Распределение структурных пор при термообработке, изученное по малоугловому рассеянию рентгеновских лучей (МУР), представлено на рис. 2. Количество микропор у всех коксов с повышением температуры прокалки уменьшается. Переходные поры остаются почти на одном уровне, только у сернистого кокса в области температур десульфуризации их количество резко возрастает. Макропоры при 1900-2000 °С увеличиваются у игольчатых коксов. [c.118]

    Интерпретация потенциальных кривых углеродных и оксидных материалов. Поскольку хемосорбция на углеродных материалах связана с переходами делокализованных электронов графитоподобных слоев, то размер структурных элементов и характер их соединения, а также тип функциональных групп должны сказываться на угловых коэффициентах изотерм фт—1п и потенциальных кривых. Известно, что с увеличением удельной поверхности технического углерода размеры кристаллитов уменьшаются от 3,0 до 2,4 нм . Кристаллиты дисперсных графитов значительно крупнее (более 5 лм ). Размеры кристаллитов активированных углей, напротив, намного меньше и, по данным малоуглового рассеяния рентгеновских лучей, они составляют около I нм2 и уменьшаются с увеличением удельной поверхности (эффективного значения) углей. [c.206]

    В работе [42] было получено аналогичное распределение методом малоуглового рассеяния рентгеновских лучей. В модельных системах, которые представляли собой смеси полициклических ароматических и парафино-нафтеновых углеводородов в соотношении 1 3 с добавлением асфальтенов, выделенных из дистиллятного крекинг-остатка (ДКО) пет- [c.41]

    Малоугловое рассеяние рентгеновских лучей. [c.58]

    ИЗ исследований малоуглового рассеяния рентгеновских лучей. Разнообразие надмолекулярных структур было обнаружено и на поверхности излома полимера. Наиболее характерна для кристалли- [c.20]

    Гетерогенность структуры доменного типа может наблюдаться методом малоуглового рассеяния рентгеновских лучей в случае растяжения аморфных образцов полистирола и полиметилметакрилата при температуре ниже Го- Обнаруживаемая методами дифракции рентгеновских лучей в больших и малых углах гетерогенность структуры расплава полиэтилена — результат проявления специфики полимерного состояния вещества, заключающейся в возможности расположения одной и той же длинной макромолекулы в нескольких упорядоченных областях, что приводит к сохранению чередования в расплаве областей повышенной и пониженной плотности, аналогично тому, как это наблюдается для частично-кристаллического полимера. Все эти данные не согласуются с моделью гомогенного полимера в виде совокупности хаотически перепутанных цепей. Сегменты и цепи группируются в областях упорядочения, больших областей флуктуации плотности. А так как эти области увеличиваются с возрастанием молекулярной массы полимера, можно сделать вывод, что истинное распределение сегментов содержит своеобразные ядра (домены) с повышенной плотностью. Остальные сегменты полимерной системы находятся вне этих доменов. [c.27]


    Сравнение данных, полученных из опытов по адсорбции и из результатов малоуглового рассеяния рентгеновских лучей, показывает, что в коксе образуются микропоры, недоступные для молекул адсорбата. [c.47]

    Малоугловое рассеяние рентгеновских лучей — это метод, использующийся при определении размеров таких морфологических образований, как ламели, сферолиты, отдельные фазы и поры при изучении макромолекул в растворах (анализ размера и формы частиц) исследовании разбавленных или густых систем коллоидных частиц, набухших полимеров, деформации и отжига полимеров, разветвленных полимеров. [c.131]

    МАЛОУГЛОВОЕ РАССЕЯНИЕ РЕНТГЕНОВСКИХ ЛУЧЕЙ [c.123]

    Малоугловое рассеяние рентгеновских лучей зависит только от порядка чередования аморфных и кристаллических областей, обладающих различными электронными плотностями, и от наличия микропор, распределенных в матрице твердого полимера. [c.123]

    Картина малоуглового рассеяния рентгеновских лучей приведена на рис. 28.8. [c.123]

    Резиноподобные свойства термоэластопластов в невулканизованном состоянии определяются их двухфазной структурой, образуемой за счет ассоциации блоков одного и того же вида [2]. С помощью электронной микроскопии и малоуглового рассеяния рентгеновских лучей установлена высокая степень регулярности структуры этих полимеров [3]. При содержании диеновой части до 50% (масс.) эластичные диеновые блоки образуют непрерывную фазу, а стекловидные блоки винилароматических соединений диспергированы в ней в виде отдельных доменов размером порядка [c.283]

    ПРИМЕНЕНИЕ МАЛОУГЛОВОГО РАССЕЯНИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ ДЛЯ ИССЛЕДОВАНИЯ СТРУКТУРЫ ПОЛИМЕРОВ [c.131]

    По результатам экспериментов были проведены расчеты кониентрации фуллеренов в исследуемых образцах. В зависимости от интенсивности колебаний концентрация фуллеренов изменяется от 0,001 до 0,05 г/мл. При сопоставлении результатов малоуглового рассеяния рентгеновских лучей [c.150]

    По-видимому дегидратация комплексонатов, у которых к ч. превышает дентатность лиганда, сопряжена с процессами полимеризации. В частности, методом малоуглового рассеяния рентгеновских лучей установлена димеризация хелата [c.389]

    Преимущество метода малоуглового рассеяния рентгеновских лучей состоит в том, что он применил для исследования обширного к.1ясса высокоднсперс-пых систем иезависимо от структуры их частиц. Определение функции распределения частиц по размерам с помощью данного метода более удобно в экспериментальном и теоретическом отношении, чем по предыдущему методу. Учет влияния различных посторонних факторов в этом методе несравненно п роще. [c.253]

    Методом малоуглового рассеяния рентгеновских лучей на дифрактометре "АМУР-К", спроектированном и сконструированном в СКБ [c.6]

    Малоугловое рассеяние рентгеновских лучей и нейтронов используется для анализа гетерогенности полимерных смесей и блоксополимеров, а совместно с ТЭМ дает возможность определить размеры доменов дисперсной фазы, например бутадиена (5 % мае.) в хлоро-преновой матрице. Однако наличие наполнителей в смесях может вызвать определенные трудности в получении результатов. [c.578]

    На основании проведенных исследований по термическому старению гелей кремнезема Шапиро и Кольтгоф [П7] согласились с авторами работы [118] в том, что структуру геля кремнезема лучше всего интерпретировать как состоящую из дискретных частиц. Методом малоуглового рассеяния рентгеновских лучей последние из указанных авторов оценили, что средний размер первичных частиц при допущении их сферической формы составлял в свежеприготовленном геле кремнезема 30—60 А. [c.303]

    Измерение и определение пористости возможно только для таких агрегатов, которые механически достаточно прочны и на которые не будут оказывать воздействие методы исследования. Например, получение характеристик пористости посредством измерения методом вдавливания ртути возможно для обычных силикагелей, используемых в качестве катализаторов, однако структура аэрогелей или осажденных кремнеземов должна при этом методе разрушиться, и полученные результаты оказываются бессмысленными. С другой стороны, измерение размеров пор путем заполнения их жидким азотом — значительно менее разрушающий способ, а анализ методом малоуглового рассеяния рентгеновских лучей, очевидно, совершенно не разрушает структуру. [c.656]

    Малоугловое рассеяние рентгеновских лучей представляет сведения о расстоянии между поверхностями раздела твердое тело—газ, т. е. дает значение диаметра пор (или диаметра частиц). [c.657]

    Второй метод определения размеров кристаллитов - метод малоугловой дифракции рентгеновских лучей, когда углы 0 составляют примерно 1... 2°. В этом случае возникают интерференции дальних порядков, то есть лучей, отражающихся не плоскостями кристаллической решетки, а целыми кристаллитами. Однако результаты измерений не всегда можно однозначно интерпретировать, поскольку малоугловое рассеяние рентгеновских лучей целлюлозой представляет суммарный эффект рассеяния от пустот в волокне и участков с различной плотностью. Методики исследования и расщифровки рентгенограмм нуждаются в уточнении и совершенствовании. [c.242]

    Дорош А.К., Годун Б.А., Бодан А.Н К вопросу применения малоуглового рассеяния рентгеновских лучей при изучении структуры битумов // Нефтепереработка и нефтехимия. Киев Наукова Думка, 1973. Вып. 16. .9O-92. [c.132]


    Неокисленные битумы имеют более высокое содержание ароматических углеводородов, меньшее содержание парафино-нафтеновых углеводородов и асфальтенов. Неокисленные битумы и полимеры СБС имеют большое сродство и поэтому в большей степени совместимы. Это первая причина лучшей совместимости. Вторая - повышенное содержание асфальтенов в составе битумов приводит к стерическим затруднениям при совмещении, причем сами асфальтены в процессе растворения не участвуют, а более высокое содержание асфальтенов характерно как раз для окисленных битумов. И третье. Исследование коллоидной структуры битумов методом малоуглового рассеяния рентгеновских лучей показало, что в составе окисленных битумов содержится 30-31% мелких коллоидных частиц размером до 16 А и 69-70% крупных коллоидных образований с размерами до 440 А. Такой битум, представленный в основном грубодисперсными частицами, можно отнести к системам типа золь-гель . Неокисленный битум содержит 85-86% частиц с размерами 9-10 А и лишь 12-13% частиц с размерами до 405 А. Такую коллоидную систему можно отнести к типу золь . В мелкодисперсной системе заметно выше скорости диффузии растворителя в полимер, процессы набухания проходят быстрее, растворение более полное. [c.39]

    Исследовалось влияние механоактивационной обработки и количества дисперсной фазы на полидисперсное строение нефтяных остатков. В качестве сырья использовались нефтяные остатки первичного происхождения (мазут и гудрон западносибирской нефти) и асфальт пропановой деасфальтизации с различным количеством дисперсной фазы, косвенно оцениваемой по содержанию асфальтенов (5,7 8,4 и 12 %, соответственно). Исходное сырье обрабатывалось ультразвуковым диспергатором УЗДН - 2Т в течение 5-30 минут при частоте 22 кГц. Затем образцы анализировались методом малоуглового рассеяния рентгеновских лучей, который позволяет изучать НДС, размеры частиц в которых значительно больше межатомных расстояний и составляют от 10 до 10000 А. Размеры частиц и их распределение относительно друг друга приведены в таблице, где К -радиус инерции частицы относительно ее центра масс, V - относительный объем, %. [c.122]

    Алканы в нефтяных системах могут находиться в молекулярном или ассоциированном состояниях [10, 14, 227, 243, 270]. Исследование молекулярной структуры н-алканов в жидком состоянии методом малоуглового рассеяния рентгеновских лучей показало, что их ассоциация происходит по поверхности молекул с помощью сил дисперсионного взаимодействия, а ассоциаты, например, н-алканы, при нормальных условиях имеют форму дисков или пластин с размерами 130-200 А [40, 151]. Число молекул в ассоциате тем больпге, чем ниже температура. Так, в гексадекане при 20°С (т. е. на 2 °С выше температуры кристаллизации) число молекул в ассоциате равно 3, а в н-октане при - 50°С (т. е. на 6°С выше температуры кристаллизации) -31. Это объясняется ослаблением тстиовото движения молекул и усилением энергии молекулярного взаимодействия алканов с ростом длины цепи. [c.11]

    В. И. Данилов и И. В. Радченко впервые в СССР исследовали рассеяние рентгеновского излучения жидким свинцом, оловом, висмутом и их сплавами. Тонкий анализ кривых интенсивности, тщательное проведение экспериментов позволили им убедительно показать, что при плавлении металлов и сплавов расположение атомов относительно друг друга не становится произвольным, а сохраняет взаимную координацию, характерную для твердого состояния. В. И. Данилов, Н.В.Мо-хов и Я. М. Лабковский применили метод рассеяния под малыми углами для исследования флуктуации плотности в жидкостях. Теория метода малоуглового рассеяния рентгеновских лучей разрабатывалась А. Гинье, О. Кратки, Р. Хозе-маном, Н. В. Филипповичем и др. [c.5]

    По методу малоуглового рассеяния рентгеновских лучей можно определять как диаметры частиц, так и средние расстояния между частицами, произвольным образом находящимися в исследуемом пространстве. Используя частицы размерами 10—50 000 нм, Драгсдоре [160] показал, что к меньшим по размеру частицам применима теория дифракции, тогда как к большим целесообразнее применять теорию преломления и отражения, основанную на законах геометрической оптики. [c.474]

    С другой стороны, тесные контакты коллоидной химии со смежными дисциплинами способствовали обогащению ее экспериментальной базы. Наряду с такими классическими методами эксперимента, родившимися именно в коллоидной химии, как определение поверхностного натяжения и двухмерного давления, ультрамикроскопия, центрифугирование, диализ и ультрафильтрацня, наблюдение разнообразных электрокинетичеоких явлений в дисперсных системах, дисперсионный анализ и порометрия, многочисленные прецизионные адсорбционные методы, изучение рассеяния света (опалесценции) и т. п., в разных разделах коллоидной химии нашли эффективное применение всевозможные спектральные методы ЯМР, ЭПР, УФ- и ИК-спектроскопия, гашение люминесценции, многократно нарушенное полное внутреннее отражение, эллипсометрия (с широким использованием лазерной техники), малоугловое рассеяние рентгеновских лучей и другие рентгеновские методы, радиоактивные изотопы, все виды электронной микроскопии. Большие перспективы открывает привлечение современных физических методов исследования поверхностей с использованием медленных электронов, масс-спектроскопии вторичных ионов и т. п. [c.9]

    Изучение стеклоуглерода с помощью малоуглового рассеяния рентгеновских лучей привело к выводу, что размеры пор (средний диаметр) составляет величину порядка 2 нм. Подробное исследование формирования пористой структуры и переход открытой пористости в недоступную при термической обработке стеклоуглерода в широком интервале температур — от 200 до 3000 °С приведено в работе [115], По данным этой работы, до 400 °С объемная и пикнометрическая (по гелию) плотности совпадают и, следовательно, отсутствуют открытые поры. В интервале температур 400-1200 °С наблюдается различие в объемной и пикнометрической плотностях с максимумами газопроницаемости, водопоглоще-ния, адсорбции и десорбции. [c.199]

    Информацию о структуре М., состоянии межфазных пленок, межчастичных взаимод. и др. получают по данным светорассеяния, фотон-корреляц. спектроскопии, малоуглового рассеяния рентгеновских лучей и нейтронов, ЭПР, ЯМР и др. [c.86]

Рис. 28.14. Схема камеры для малоуглового рассеяния рентгеновских лучей, коллииаторная трубка 2—образец 3 —илоскаи рентгеновская пленка. Рис. 28.14. <a href="/info/329333">Схема камеры</a> для малоуглового рассеяния рентгеновских лучей, коллииаторная трубка 2—образец 3 —илоскаи рентгеновская пленка.
    Неокисленные битумы имеют более высокое содержание аромати 1ес-ких углеводородов, меньшее содержание парафино-нафтеновых углеводородов и асфальтенов и, как следствие, большое сродство полимерам типа СБС. Это первая причина лучшей совместимости. Вторая - повышенное содержание асфальтенов в составе битумов приводит к стерическим затруднениям при совмещении, причем сами асфальтены в процессе растворения не участвуют, а более высокое содержание асфальтенов характерно как раз для окисленных битумов. И третье. Исследование коллоидной структуры битумов методом малоуглового рассеяния рентгеновских лучей показало, что неокисленные битумы представляют собой мелкодисперсную систему типа золь , а окисленные - более грубодисперсную типа золь-гель В мелкодисперсной системе заметно выше скорости диффузии и быстрее происходят процессы набухания и растворения полимера [c.81]

    К настояш,ему времени фуллерены, выделенные из структуры железоуглеродистых сплавов проанализированы тремя основными методами, опреде-ляюш,ими различные характеристики нанообъектов. Первый метод - качественная оценка - включает масс-спектрометрию и малоугловое рассеяние рентгеновских лучей (МУР). [c.14]

    Впервые этот принцип организации рибосомы был выведен И. Н. Сердюком и др. из экспериментов по измерению радиусов инерции (Rg) рибосомных субчастиц. Прежде всего, радиус инерции, измеренный методом диффузного малоуглового рассеяния рентгеновских лучей, оказался существенно меньше, чем можно было ожидать из размеров (объема) субчастицы, если бы она была однородно плотным телом. Отсюда следовал вывод, что электронно более плотный компонент частицы (РНК) локализуется преимущественно ближе к центру тяжести частицы, в то время как менее плотный компонент (белок) имеет тенденцию располагаться в среднем ближе к периферии. Далее, измерение радиусов инерции рибосомных субчастиц с помощью разных типов излучения (рентгеновские лучи, нейтроны, свет) показало, что чем больше вклад белкового компонента, по сравнению с РНК, в рассеяние (относительная рассеивающая доля белка растет в вышеуказанном ряду типов излучения), тем больше значение радиуса инерции частицы (рис. 62). Наконец, применение нейтронного рассеяния частиц в растворителях с разной рассеивающей способностью для нейтронов (разным соотношением НаО и DaO) позволило прямо измерить радиус инерции РНК и белкового компонента in situ в отдельности. Дело в том, что Н2О и D2O сильно различаются по рассеивающей способности для нейтронов, а рассеивающие способности биологических макромолекул занимают проме- [c.104]

    Малоугловое рассеяние рентгеновских лучей. Брилл, Вейл и Шмидт [158] продемонстрировали возможность использования малоуглового рассеяния рентгеновских лучей для измерения распределения частиц по размерам в относительно разбавленных золях. Образцы коллоидного кремнезема с номинальным размером частиц около 15 и 10 нм (людокс-Н5 и людокс-5М) разбавляли примерно до 1 % 5102. Диаметры частиц измеряли с помощью электронного микроскопа при увеличении вплоть до 32 000 с погрешностью всего 1 нм. Было сделано заключение, что данные по распределениям частиц по их диаметрам, полученные с помощью малоуглового рассеяния рентгеновских лучей и электронной микроскопии, для таких образцов кремнезема находятся в хорошем согласии между собой в пределах экспериментальной погрешности. Аналогичное исследование кремнезема людокс-Н5 приводится в работе [159] в растворах, разбавленных до 0,5%, обнаружены частицы диаметром около 18 нм. [c.474]


Смотреть страницы где упоминается термин Малоугловое рассеяние рентгеновских лучей: [c.50]    [c.167]    [c.14]    [c.101]    [c.34]    [c.127]    [c.284]    [c.34]   
Смотреть главы в:

Экспериментальные методы в химии полимеров - часть 2 -> Малоугловое рассеяние рентгеновских лучей

Химия кремнезема Ч.1 -> Малоугловое рассеяние рентгеновских лучей

Экспериментальные методы в химии полимеров Ч.2 -> Малоугловое рассеяние рентгеновских лучей


Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.123 , c.131 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.123 , c.131 ]

Сверхвысокомодульные полимеры (1983) -- [ c.18 , c.39 , c.45 , c.76 , c.205 , c.210 , c.212 , c.221 , c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Биктимирова Т.Г., Новоселов В.Ф., Тимербулатова А.Т Исследование асфальтенов остатков по малоугловому рассеянию рентгеновских лучей

Кривые малоуглового рассеяния рентгеновских лучей полиимидных волокон

Лучи рентгеновские

Малоуглового рассеяния рентгеновских лучей метод

Малоугловое рассеяние

Малоугловое рассеяние рентгеновских

Полиуретаны малоугловое рассеяние рентгеновских лучей

Применение малоуглового рассеяния рентгеновских лучей для исследования структуры полимеров

лучами рентгеновскими лучами

спектроскопня электронная микроскопия, корреляция с малоугловым рассеянием рентгеновских лучей



© 2025 chem21.info Реклама на сайте