Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О применимости теории столкновений к реакциям в растворах

    Для реакций между ионами получен один поразительный результат, состоящий в том, что предэкспоненциальный множитель очень сильно зависит от зарядов ионов. Это положение иллюстрируется в табл. 3 (стр. 228). Обнаружено, что предэкспоненциальные множители для реакций между ионами противоположного знака сильно превышают обычно наблюдаемые, в то время как для реакций ионов одинакового знака предэкспоненты ненормально низки. Таким образом, налицо очень важное влияние электростатического притяжения и отталкивания. Посмотрим на этот эффект с точки зрения теории столкновений если ионы имеют противоположные знаки, то они будут сталкиваться значительно чаще за счет имеющихся между ними сил притяжения, в то время как ионы одного знака будут сталкиваться реже. Многие авторы, но в основном Скетчард [81 и Мелвин-Хьюз [9], занимались исследованиями в этом направлении, и в результате появилась модифицированная теория столкновений, применимая к реакциям с электростатическим взаимодействием. Здесь можно воспользоваться и теорией абсолютных скоростей реакций. Но вначале рассмотрим общую проблему влияния растворителя на скорости и предэкспоненциальные множители реакций в растворе, а затем на основе теории Дебая — Хюккеля попытаемся выяснить причины влияния ионной силы раствора на скорость взаимодействия. [c.222]


    При быстрых реакциях в растворах может наблюдаться отклонение от равномерного распределения частиц в пространстве. Наличие молекул растворителя в этом случае обеспечивает равновесное распределение частиц по энергиями, но диффузия реагирующих частиц друг к другу может быть настолько медленной.по сравнению со скоростью химической реакции, что пространственное распределение реагирующих частиц не будет равномерным. Близко расположенные реагирующие частицы быстро вступают в реакцию друг с другом и, наоборот, те частицы, которые не имеют по соседству другой частицы, с которой они могли бы прореагировать, в реакцию вступают позже [6]. Поэтому около непрореагировавших частиц возникают зоны, обедненные способными к реакции частицами, т. е. возникает ситуация, сходная с той, о которой мы говорили при рассмотрении поглощения частиц зерном сорбента и в теории коагуляции. Для количественного описания распределения частиц по объему мы можем, как и в теории коагуляции, найти из уравнения диффузии концентрацию способных к реакции частиц с как функцию расстояния г от центра избранной частицы и времени I. Между коагуляцией и бимолекулярными реакциями в растворах имеются, однако, и существенные различия. Применимость уравнения диффузии к коагуляции в растворах и к коагуляции достаточно крупных аэрозольных частиц (с размерами больше длины свободного пробега) не вызывает сомнений. Однако в бимолекулярной реакции линейные размеры зон с обедненной концентрацией реагирующих частиц оказываются сравнимыми с размерами молекулы. Использование уравнения диффузии для такого случая вызывает некоторые возражения. Тем не. менее обычно считают возможным пользоваться уравнением диффузии в задачах о столкновениях молекул, приводящих к реакции. [c.97]

    Можно показать теоретически (см. приложение 4), что для бимолекулярных реакций в растворе применима теория бинарных соударений газовой фазы. При изучении реакций в растворах можно пользоваться уравнениями теории бинарных соударений, дающими общее число столкновений, число активных столкновений, зависимость константы скорости реакции от температуры и т. д. Применение теории бинарных соударений ограничено необходимостью выполнения ряда условий, а именно  [c.86]


    О применимости теории столкновений к реакциям в растворах [c.201]

    Эта теория в большей мере, чем теория столкновений, позволяет подойти к решению проблемы сложных реакций. Она применима к реакциям, протекаюш,им в растворе, тогда как теория столкновений хорошо описывает только реакции в газовой фазе, где очень часто стерический фактор трудно вычислить. [c.147]

    Теория жидкого состояния значительно хуже разработана, чем теория газообразного состояния, и это отчетливо сказывается на уровне теоретической интерпретации явлений химической кинетики в конденсированной фазе. Теория реакций в газовой фазе базируется на двух следствиях молекулярно-кинетической теории возможности расчета числа столкновений между реагирующими молекулами и применимости к реагирующей системе максвелл-больцмановского распределения. При переходе к реакциям в растворах приходится рассматривать третий объект — молекулы растворителя. При этом возможны два крайних случая 1) молекулы растворителя не входят в состав активного комплекса, и их взаимодействие с молекулами растворенного вещества сводится к столкновениям и вандерваальсовому взаимодействию 2) молекулы растворителя входят в состав активного комплекса и в той или иной мере определяют кинетические свойства последнего. Взаимодействие второго типа, пожалуй, больше относится к каталитическим явлениям и будет рассмотрено ниже. Ограничиваясь первым случаем, рассмотрим, в какой мере методы кинетической теории применимы к реакциям в растворах и можно ли для подсчета числа столкновений между реагирующими молекулами в растворах использовать газокинетическое уравнение. Дать обоснованный ответ на этот вопрос трудно и приходится ограничиваться критерием практической применимости расчета. Поскольку при изучении реакций в растворах удобно пользоваться значениями концентраций, выраженных в моль/л, газокинетическое выражение для константы скорости запишется в виде [c.170]

    Интересна попытка Мелвин-Хьюза рассмотреть применимость обсуждаемого варианта теории столкновений к реакциям в растворах. На основании данных 200 реакций он построил график, на абсциссе [c.156]

    Применима ли теория активных столкновений к реакциям в растворах  [c.79]

    Изучением кинетики реакций этого типа занимался также Аррениус. Как видно, значения отношения йвыч/ экспер Для большинства реакций близки к единице, что подтверждает применимость простой формулы теории столкновений (УП.16) к реакциям в растворах. Даже реакции с участием ионов также укладываются в эту схему, хотя в общем согласно теории Бренстеда, Бредига и Хри-, стиансена прн ионных реакциях необходимо учитывать сгущение ионов в ионных атмосферах , а также влияние. ионной силы (подробнее об этом см. гл. ХП, 6). [c.329]


Смотреть страницы где упоминается термин О применимости теории столкновений к реакциям в растворах: [c.170]    [c.299]    [c.114]    [c.12]   
Смотреть главы в:

Химическая кинетика и катализ 1974 -> О применимости теории столкновений к реакциям в растворах

Химическая кинетика и катализ 1985 -> О применимости теории столкновений к реакциям в растворах




ПОИСК





Смотрите так же термины и статьи:

Растворов теория растворов

Растворы теория

Реакции в растворах

Столкновения

Теория применимость к растворам

Теория реакций

Теория столкновений



© 2025 chem21.info Реклама на сайте