Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетическая гибкость и факторы, ее определяющие

    Рассмотренные выше понятия о свободном и заторможенном вращении звеньев изолированной полимерной цепи не дают -лол-ного представления о гибкости макромолекул полимера, так как характеризуют только термодинамическую гибкость. В случае реальных полимерных систем величина кинетической гибкости макромолекул определяется по крайней мере тремя факторами величиной потенциального барьера вращения, интенсивностью межмолекулярного взаимодействия и температурными условиями. Все эти факторы взаимосвязаны, и судить о гибкости макромолекул полимерной системы по одному из них нельзя. В общем, гибкость полимерных, цепей тем выше, чем ниже значения потенциальных барьеров вращения изолированной макромолекулы, чем слабее межмолекулярное взаимодействие и чем выше температура. [c.42]


    Разумеется, такой метод расчета является весьма грубым, однако он достаточно хорошо иллюстрирует фундаментальную роль взаимодействий ближнего порядка, действующих в пределах небольших фрагментов цепи (и соответственно зависящих от ее химического строения), как основного фактора, определяющего гибкость макромолекулы в целом, а также оказывающего косвенное влияние на ее конформацию. Если же поставить обратную задачу — оценить гибкость молекулярной цепочки по ее конформационным свойствам, определенным на основании измерения физических характеристик раствора и т. д., то в этом случае основная проблема заключается в определении вероятности реализации транс- или зош-конформаций, которая характеризует собой разность между значениями энергии соответствующих поворотных изомеров. Последний параметр определяет так называемую равновесную гибкость макромолекулы. ( 1 другой стороны, параметр, оказывающий доминирующее влияние, например на температуру стеклования полимера, и характеризующий, очевидно, подвижность сегментов макромолекулы, имеет кинетическую природу и определяется, таким образом, высотой потенциального барьера е, препятствующего переходу из положения G или G в положение Т. По этой причине упомянутый параметр носит название кинетической гибкости . [c.159]

    Приведенные данные служат, очевидно, прямым доказательством различий механизмов межфазного взаимодействия эластомеров с поликапроамидом при низких и повышенных температурах (при симбатности изменения соответствующих факторов). В обоих случаях эти механизмы определяются ролью молекулярно-кинетических факторов (подвижностью макромолекулярных цепей), однако в первом из них превалирует влияние гибкости трансляционной (х), во втором-структурной природы (Л). С ростом температуры происходит наиболее заметное изменение структуры переходных слоев (отражаемое изменением А), способствующее интенсификации перемещения наименее высокомолекулярных фракций эластомера и, соответственно, максимально эффективному взаимопроникновению структурных единиц макромолекул адгезива через границу раздела с фазой субстрата. Тот факт, что такие структурные единицы можно отождествить с сегментами, обусловлен физическим смыслом [443] параметра 5. [c.119]

    Расчет гибкости конкретных полимерных цепей должен основываться на их химическом строении. Так, конформации мономерных звеньев в полимерах типа (—СН2—СНН—) (например, полистирол, см. рис. 3.1) и (—СН2—СНг—) определяются преимущественно взаимодействиями массивных боковых привесков Н. Сведения об этих конформациях удается получить путем исследования кристаллических полимеров методом рентгеноструктурного анализа. Вследствие конфигурационной гетерогенности и дисперсии длин цепей обычные полимеры не кристаллизуются или кристаллизуются лищь частично. Однако стереоре-гулярные полимеры кристаллизуются хорощо, их можно получить даже в виде монокристаллов. Но в блоке и стереорегулярные полимеры кристаллизуются не полностью. Наряду с гетерогенностью, кристаллизации препятствуют кинетические факторы. Для того чтобы образовать кристалл, макромолекулы должны переориентироваться. Стастические флуктуирующие клубки закристаллизоваться не могут — цепи должны вытянуться. Даже если термодинамические условия благоприятствуют развертыванию клубков и ориентации цепей, эти процессы могут потребовать слищком длительного времени по сравнению с временем опыта. Необходимо преодолеть барьеры внутреннего вращения. Равновесные термодинамические свойства поворотно-изомерной макромолекулы определяются разностями энергий поворотных изомеров напротив, кинетические свойства определяются высотами энергетических барьеров. Для кристаллизации существенна не только термодинамическая, но и кинетическая гибкость цепей. Прогрев полимера или его набухание в низкомолекулярном растворителе облегчают кристаллизацию. [c.132]


    Вследствие того что температура перехода второго рода полимеров связана, по-видимому, с изменением подвижности молекул, можно ожидать, что в основном одни и те же свойства молекул определяют и Т,, и температуру плавления. Температура перехода второго рода для аморфных веществ является тем же, чем температура плавления для кристаллических веществ, хотя нужно помнить, что изменение свойств при Т, значительно меньше, чем при Тпл. например, аморфный полиэтилентерефталат, который при комнатной температуре стеклообразен (хотя и менее тверд, чем кристаллический материал), становится мягче при Г, (69") изменение же свойств кристаллического вещества при Тпл. гораздо большее—от жесткого, твердого до вязкой жидкости. Тем не менее, поскольку изменение подвижности молекул определяется степенью их гибкости (вращением вокруг связей цепи) и прочностью межмолекулярных связей, можно ожидать, что имеет место некоторая зависимость между температурой плавления и температурой перехода втсфого рода полимеров. С другой стороны, термодинамическое различие между этими двумя явлениями (одно равновесное, другое кинетическое) указывает на значительное различие в молекулярном механизме. Поэтому, хотя силы межмолекулярного взаимодействия и так называемая молекулярная гибкость могут быть основными факторами, определяющими температуру перехода второго рода (как и точку плавления), их роль в этих процессах может существенно различаться, в частности может по-разному проявляться молекулярная гибкость. [c.299]


Смотреть страницы где упоминается термин Кинетическая гибкость и факторы, ее определяющие: [c.111]   
Смотреть главы в:

Физико-химия полимеров 1978 -> Кинетическая гибкость и факторы, ее определяющие




ПОИСК







© 2025 chem21.info Реклама на сайте