Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность зависимость от состава

    Основу второго подхода составляет совокупность методов, объединяемых в кибернетике общим термином черный ящик . В их состав входят вероятностно-статистические методы анализа сложных явлений и систем, теория статистических решений и оптимального планирования эксперимента, методы теории распознавания образов, адаптации и обучения и т. п. Статистические методы поиска катализаторов позволяют по ограниченной экспериментальной информации просматривать значительные совокупности факторов, предполагаемых априори ответственными за каталитическую активность. Причем планы эксперимента предусматривают возможность варьирования испытываемых факторов на двух и более уровнях в зависимости от сложности поверхности отклика. Выявление доминирующих факторов проводится по различным вариантам ветвящейся стратегии, а их численная оценка — с использованием стандартных приемов регрессионного анализа. При усложнении задач статистического анализа методы корреляционного и регрессионного анализа уступают место математической теории распознавания с богатым арсеналом приемов раскрытия многомерных корреляций. [c.58]


    Если известны коэффициенты уравнения Антуана для каждого из компонентов, то по приведенным выше уравнениям представляется возможным, если известны параметры, характеризующие концентрационную зависимость коэффициентов активности, рассчитать состав (молярную долю 1-го компонента Xi) бинарного раствора. Именно это и позволяет программа 77. [c.120]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Качественный и количественный состав катализатора является одним из основных классификационных признаков. Катализаторы можно подразделить на группы в зависимости от природы активного компонента. В пределах каждой такой группы катализаторы располагают в ряды в порядке возрастания атомных (молекулярных) весов активных компонентов. Катализаторы, содержащие данный активный компонент, можно располагать в ряды в порядке возрастания сложности химического состава контактов (числа компонентов), а при равенстве степени сложности — в порядке возрастания атомного (молекулярного) веса компонентов катализатора. Компоненты, входящие в состав данного катализатора, можно помещать в ряды в порядке уменьшения их содержания..  [c.8]

    Если высокомолекулярный углеводород (в результате введения в состав его гидрофильной группы, придающей ему растворимость в воде) перевести в водный раствор, то в зависимости от величины мо екулы исходного углеводорода и характера гидрофильной группы раствор в большей или меньшей мере приобретает капиллярно-активные свойства. Это значит в таком растворе значительно снижается поверхностное натяжение воды, что внешне проявляется в сильном ценообразовании. [c.408]

    В свою очередь, на основе этих соединений синтезирован целый ряд новых органических веществ с ценной совокупностью свойств. Математическая обработка результатов экспериментов позволила выявить зависимость состав-структура-свойства-био-логическая активность , что существенно облегчило осуществление направленного синтеза биологически активных веществ. [c.3]

    Лучшей формой активного участия трудящихся в работе по НОТ являются творческие бригады. Состав бригады определяется в зависимости от объема работ по изучению состояния организации труда и производства. Руководит бригадой, как правило, заместитель начальника цеха. [c.346]

    Как правило, процесс координации фиксированных ионов под действием противоионов вносит заметный вклад в селективность при больших содержаниях преимущественно поглощаемого иона, поэтому обычная форма его проявления — образование минимума на зависимости —состав. Сложнее объяснить появление максимумов наиболее вероятная причина, если исключить возможность ошибок эксперимента, влияние взаимодействий между соседними парами противоион — фиксированный ион. Отметим, что во всех рассмотренных выше случаях вклад изменений коэффициентов активности в фазе раствора предполагался малым. [c.156]

    Хорошо известно, что знание структуры полимерной цепи во многих случаях служит отправным пунктом для выяснения природы активных центров, которые участвовали в полимеризации. Классическим примером этого является изучение зависимости состав исходной смеси — состав сополимера при сополимеризации метилметакрилата со стиролом. Та- [c.351]

    Состав реактивных топлив зависит от способа их получения (та л. 2.5). Кинетика окисления реактивных топлив в зависимости от их группового углеводородного состава, наличия и структуры гетероорганических соединений, ингибиторов окисления, концентрации кислорода, температуры, контакта с каталитически активными металлами может иметь разный характер [46]. Главной отличительной чертой этого процесса является постоянство его скорости во времени, наличие автоускорения или замедления. [c.45]

    Уравнение (1У-2) выражает зависимость коэффициента активности от давления. Это уравнение может быть использовано для вычисления коэффициента активности при давлении Р, исходя из значения коэффициента активности при некотором произвольном стандартном давлении если состав и температура постоянны. [c.31]

    Оптимальной температурой полимеризации бутиленов является 170—180° С совместная полимеризация углеводородов j —С, осуществляется при несколько более высоком температурном режиме и, наконец для переработки пропан-пропиленовой фракции требуется температура 220—230° С. Указанные температуры могут несколько колебаться, в зависимости от принятого в системе давления, активности катализатора и заданной глубины превраи ения. Повышение температуры утяжеляет фракционный состав полимербензина. [c.324]

    Химическая активность теплоносителя (газовой печной среды) зависит от коэффициента расхода воздуха а при а > 1 — окислительная, при а = 1 — нейтральная и при а < 1 — восстановительная. От значения а зависит температура, которая может быть достигнута или выбрана, расход воздуха, количество и химический состав продуктов сгорания. Эти зависимости приведены на рис. 14—17. [c.147]

    Активные угли, предназначенные для очистки промышленных сточных вод, должны обладать многими свойствами, не обязательными в том случае, когда они используются для адсорбции газа или паров растворителей. Угли должны быть относительно крупнопористыми, чтобы их поверхность была доступна для сложных Молекул веществ они должны обладать небольшой удерживающей способностью при регенерации и возможно большей способностью противостоять истиранию, а также хорошей смачиваемостью водой. В зависимости от способа применения активные угли должны иметь определенный гранулометрический состав. [c.342]


    Свойства азеотропной смеси — ее температура кипения и состав — определяется степенью неидеальности системы и значением давлений паров чистых компонентов. Соответственно с рассмотренным (стр. 29) характером зависимости коэффициентов активности бинарных систем от состава, чем меньше различие давлений паров чистых компонентов, тем при меньших [c.72]

    В качестве примера рассмотрим расчет констант в уравнении Ван-Лаара в системе диоксан—вода. Азеотроп содержит 0,53 мол. доли воды и кипит при атмосферном давлении при 87,8°. Коэффициенты активности в азеотропной точке 1 = 1.57 и У2=1,55. По уравнениям (239) находим Л = 0,68 и 5=0,88. Эти значения констант А и В хорошо согласуются с величинами, рассчитанными выше по обшему давлению. В системах с симметричным ходом зависимости коэффициентов активности компонентов от состава согласно уравнениям (223) равновесие описывается уравнениями с одной константой. Для ее определения достаточно знать только состав азеотропа. Уравнение для расчета константы А получается из уравнений (223) и условия [c.183]

    Реакционная среда влияет на катализатор, изменяя его состав, структуру, свойства [53]. Так, экспериментально установлено, что поверхность металлических катализаторов легко перестраивается под воздействием реакционной среды, стремясь к минимуму свободных поверхностных энергий [54]. Для большинства реакций каталитического окисления на окисных катализаторах в зависимости от состава реакционной смеси суш ественно меняется содержание кислорода и заряд катионов катализатора что приводит к изменению их активности и селективности [55]. [c.17]

    Воздействие реакционной смеси на свойства катализатора должно учитываться в кинетических зависимостях реакций гетерогенного катализа. В подавляющем большинстве случаев при выводе кинетических уравнений молчаливо предполагается неизменность твердого катализатора и независимость его свойств от состава реакционной смеси и ее воздействия на катализатор. В действительности же под воздействием реакционной среды часто изменяется химический состав катализатора, что может приводить к фазовому превращению активного компонента, изменению объемного состава катализатора в приповерхностном слое. Вот почему при изменении состава и температуры реакционной смеси скорость реакции меняется также и в результате изменения свойств катализатора. Зависимость скорости реакции от концентрации реагентов должна поэтому включать две функции, одна из которых f[ (t) 6(с( ))] ха- [c.13]

    В прошлом вредное влияние серы ставилось в зависимость от характера сернистых соединений, входяш,их в состав топлива. Все сернистые соединения делились на 1) содержащие активную или корродирующую серу и 2) содержащие неактивную серу. Сернистым соединениям первой группы приписывались все вредные последствия применения топлив с повышенным содержанием серы. Как показали наши и ряд других работ, деление на активную и неактивную серу необоснованно. Сера и все сернистые соединения, входящие в состав топлива, в условиях двигателя являются активными, так как при сгорании их в двигателе образуются ЗОг и 50з, которые в свою очередь в присутствии паров воды способны образовать кислоты, вызывающие коррозию цилиндро-поршневой группы. Впервые это было обнаружено при исследовании запуска двигателя. Более поздними работами доказано наличие газовой сернистой коррозии и при установившемся режиме работы двигателя. [c.135]

    Из рис. 2—4 видно, что в случае применения катализатора КУ-2 лучшая линейность кинетических зависимостей наблюдается для уравнения второго порядка. Незначительное отклонение этих зависимостей от линейности при этерификации низкомолекулярных кислот объясняется, по-видимому, следующими явлениями эте-рификация ТЭГ низкомолекулярными кислотами катализируется лучше, чем высокомолекулярными. Низкомолекулярные кислоты свободно проникают в поры катализатора, и реакция протекает быстро. Из-за накопления внутри пор крупных молекул продуктов реакции диффузия кислот затрудняется по мере протекания реакции, т. е. диффузия частично контролирует кинетику, и часть активных групп внутри пор не проявляет своего действия. Таким бразом, состав катализатора при этерификации этими кислотами как бы меняется к концу реакции, чем и объясняется отклонение от линейности. [c.108]

    Строго говоря, нельзя выражать активность катализатора независимо от состава реакционной смеси, например, по изменению константы скорости реакции или энергии активации, так как катализатор при изменении состава реакционной смеси существенно меняет, свой состав и свойства. А кинетические зависимости в значительной степени определяются свойствами катализатора. Поэтому [c.408]

    Различают структурообразующее промотирование и модифицирование. Структурообразующие промоторы стабилизируют активную фазу катализатора по отношению к нагреванию или другим воздействиям они препятствуют термической рекристаллизации (укрупнению кристаллов) катализатора. Модифицирующие промоторы (модификаторы) изменяют строение и химический состав активной фазы. В зависимости от концентрации одни и те же добавки могут оказывать как промотирующее, так и отравляющее действие. [c.429]

    Авторами получены зависимости, связывающие между собой переменные факторы процесса, активность катализатора, включая влияние остаточного кокса после регенерации, химический состав сырья и др. На рис. 4.15 в качестве примера приведена зависимость функции конверсии. (1—X) от массовой скорости подачи сырья при различных отношениях катализатор сырье тангенс угла наклона прямой соответствует Яд = 0,65. [c.109]

    Установлена корреляция между поверхностной (межфазной) активностью ПАВ, его способностью снижать поверхностное и межфазное натяжение (на границе р-ра с воздухом или др. жидкостью) и ККМ. Чем больше поверхностная активность ПАВ, тем большая склонность к М. характерна для этого ПАВ и тем ниже ККМ. Согласно этим данным, ККМ-это концентрация, при к-рой термодинамич. активность неассоциир. молекул ПАВ, его поверхностная активность на разл. субстратах достигает предельного значения (в отличие от молекул ПАВ мицеллы поверхностно неактивны). Из ряда эксперим. зависимостей состав-св-во возможно представление о ККМ как о предельной концентрации, характеризующей св-ва мицелл при бесконечном разбавлении системы ПАВ-р-ритель. [c.96]

    При исследовании фазового равновесия в изотенископе паровую фазу не анализировали, а коэффициенты активности и состав паровой фазы рассчитывали, исходя из концентрационной зависимости общего давления пара по методу Ван Несса [8]. [c.49]

    В основе расчета, предложенного в [141], лежит метод кусочно-гладкой интерполяции, аналогичный двупараболическому, но обобщенный на случай произвольной интерполирующей функции 2-го порядка. Предварительное сглаживание данных осуществлялось путем аппроксимации зависимостей — состав при данной активности воды кубическим уравнением [141]. Достоинством предложенного алгоритма расчета является то, что в отличие от [c.148]

    Табл. 5 содержит наиболео доетовернг.1е данные ио процентному содержанию основных классов углеводородов в синтетических бензинах. Понятно, что состав бензинов может отклонятьс5 от приведенных в таблице данных в зависимости от природы сырья и условий процесса. Состав каталитических крекинг-бензинов, в частности, зависит от изменений температуры, времени контакта и активности катализатора. [c.56]

    Состав сополимера при старении катализатора либо остается постоянным [6], либо изменяется [8] в зависимости от того, содержит ли катализатор центры, активность которых по отношению к этилену и пропилену не изменяется во времени, или несколько типов активных центров, различающихся между собой как по стабильности, так и по константам сополимеризации [10]. Активность катализатора, молекулярная масса образующегося сополимера, а в некоторых случаях и состав последнего зависят от соотношения между компонентами каталитической системы. Оптимальное отношение А1 У не одинаково для разных систем. При сополимеризации этилена и пропилена на системе V(С5Н702)з + (С2Н5)2А1С1 с изменением отношения А1 V от 4 до 30 [г ] сополимера уменьшилась от 2,9 до 0,77 дл/г, что объясняют передачей цепи через алкилалюминий [6]. При использовании других катализаторов столь резкого изменения [т]] не происходит [9]. [c.296]

    Модифицирование катализаторов, открытое С. 3,,.Ро.гш1ским (1940), заключается в том, что одни й те же добавки в зависимости от концентрации, могут оказывать как отравляющее, так и промотирующее действие. Модифицирующие промоторы изменяют строение и химический состав активной. фазы.. Их роль сводится, возможно, к синтезу на поверхности катализатора ак- [c.302]

    Так, например, расход воздуха на входе в турбокомпрессор-ное отделение в зависимости от условий работы системы может колебаться в пределах от 70 до 115% от своего номинального значения. Изменения качества сырья и неравномерность его подачи в камеру сгорания приводят к возникновению неопределенности в расходе серы на входе в печное отделение. В свою очередь, этот факт совместно с колебаниями в режиме работы самой печи сжигания серы вызывает неопределенность концентрации диоксида серы на входе в контактно-абсорбционное отделение в пределах 1—1,5%. В реакционной смеси, подаваемой на слои контактной массы, неизбежно содержатся примеси веществ, отравляющих катализатор и снижающих его активность. Состав этих примесей и их количество постоянно меняются в процессе функционирования системы. В силу этих причин активность катализатора также не может быть представлена детерминированной величиной и должна рассматриваться в качестве неопределенного параметра. В ходе эксплуатации системы на теплопередающей поверхности аппаратов образуется слой загрязнений, что приводит к необходимости учета неопределенности по коэффициентам теп.попере-дачп. Дополнительную неопределенность в значении коэффициентов теплопередачи вносит неточность его расчета по соответствующим уравнениям математической модели (см. табл. 6.1). [c.273]

    Рабочий слой подины электропечей активно участвует в физикохимических процессах, протекающих в ванных печах, что гызывает изменение ее химического состава, а также пористссти в зависимости от выплавляемой марки стали. Отмечено колебание содержания почти всех составляющих компонентов верхнего слоя пс ходу плавки FeO — от 1,60 до 12,34%, MgO — от 42,7 до 73,6%, SiO.o — от 6,96 до 16,42%, СаО — от 7,20 до 37,6% и т. д. В связи с изменением химического состава подины изменяется минералогический состав, меняется пористость ее до глубины 20 мм [29]. [c.89]

    Продукты термической и термокаталитической переработки нефтяного сйрья могут содержать АС всех тппов, распространенные в сырых нефтях и прямогонных дистиллятах. Известно, что состав продуктов вторичных процессов нефтепереработки меняется в очень широких пределах в зависимости от многих факторов (природы сырья, технологии и режимных параметров процесса, природы и активности катализатора и т. д.). [c.136]

    Неравенства (149), (150) и (151) могут быть использованы для предсказания азеотропизма в трехкомпонентных системах, если известна зависимость коэффициентов активности компонентов от состава. Простейшей формой такой зависимости являются рассматриваемые ниже уравнения (252а, стр. 189), которые получаются при условии, что зависимость коэффициентов активности от состава в бинарных системах, входящих в состав тройной системы, выражается уравнением теории регулярных растворов (с одной константой), а совместное взаимодействие всех трех компонентов друг с другом отсутствует. [c.93]

    На велич ну перенапряжения водорода влияет состав раствора pH, общая концентрация ионов, поверхностно-активные вещества. Зависимость перенапряжения на разных металлах от оН раствора различна. Так, на нлатине н- свинце т) практически не зависит от pH на ртути при увеличении pH от 2 до 7 пере- [c.512]

    Одним из наиболее важных сведений, полученных в ходе сравнения перемешивающих устройств, является влияние типа импеллера на качество алкилата. Как упоминалось выше, поскольку состав кислоты очень сильно влияет на качество алкилата, сравнение следует проводить при одинаковом составе кислоты. В настоящем исследовании ключевую роль в этом эффекте ипрали растворенные в кислоте углеводороды. Этот компонент, характеризующий силу кислоты, является сложной смесью с преобладанием в ней циклических полимеров [6]. Поскольку качество алкилата существенно меняется в зависимости от содержания в кислоте растворенных в ней углеводородов, было предложено много теорий, посвященных их роли в улучшении качества алкилата в некоторых из этих теорий им отводилась роль переносчиков гидрид-ионов, в других — роль поверхностно-активного вещества, в третьих —роль вещества, повышающего растворимость изобутана в серной кислоте. [c.184]

    На термостабильность катализаторов этого типа может оказывать заметное влияние метод приготовления [62]. Катализаторы, имеющие одинаковый химический состав, могут обладать очень различной термостабильностью. На рис. 32 показано изменение активности двух таких катализаторов в зависимости от продолжительности работы. Хотя оба катализатора испытаны в идентичных рабочих условиях на газах, свободных от ядов, ясно видно, что один из катализаторов теряет активность быстрее другого. Методами хемосорбции газов и рентгеноструктурным анализом было доказано, чуо поведение худшей композиции объясняется быстрым спеканием активных компонентов. Было показано также, что падение активности вследствие термического спекания относительно незначительно для хорошо приготовленного катализатора, — разумеется, в пределе рабочих температур до 250 ""С. Различие в приготовлении заключалось в том, что хороший катализатор содержал 12% А12О3 (стабилизатор). Другой содержал только 4% стабилизирующей окиси алюминия вместе с 8% измельченной окиси алюминия. [c.136]

    В режиме граничного трения пленка смазочного материала становится очень тонкой, при этом в точках микроконтактов зубчатых колес возникают очень высокие температуры, которые в десятитысячные доли секунды достигают и превосходят температуру плавления металла. При этом активные элементы противозадирных и противоизносных присадок вступают в химическое взаимодействие с металлом, образуя модифицированные слои (так называемые эвтектические смеси ) с более низким напряжением сдвига, чем у металлов. Эти модифицированные слои представляют собой сульфиды, оксиды, фосфаты или фосфиды железа (в зависимости от присадки, входящей в состав масла). Модифицированная пленка образуется мгновенно и предотвращает задир зубчатых колес. Далее, под воздействием сил, возникающих в агрегате трансмиссии, эта пленка может быть подвергнута частичному сдвигу. При этом в точке контакта зубьев колес снова происходит быстрое повышение температуры, которое вызывает повторение реакции и повторное образование пленки. И такдалее. [c.187]


Смотреть страницы где упоминается термин Активность зависимость от состава: [c.229]    [c.75]    [c.21]    [c.394]    [c.568]    [c.153]    [c.489]    [c.361]    [c.337]    [c.92]    [c.99]    [c.83]    [c.30]    [c.45]   
Физическая химия растворов электролитов (1950) -- [ c.26 ]

Физическая химия растворов электролитов (1952) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Агрономов. Исследование зависимости активности металлических катализаторов, нанесенных на окись алюминия, от состава и структуры

Активность расчет по зависимости давления пара от состава раствор

Активный состав

Зависимость активности катализаторов от химического состава

Зависимость активности от

Зависимость активности от состава при постоянных температуре и давлении. Определение коэффициентов активности

Зависимость антибиотической активности стрептомицина от pH среды и ее состава

Зависимость коррозионной активности почв и грунтов от их состава

Зависимость коэффициентов активности компонентов от состава раствора

Применение статистической термодинамики для анализа зависимости активности компонентов от состава шлака

Удельная активность катализаторов и ее зависимость от химического состава и метода приготовления. Правило Борескова



© 2025 chem21.info Реклама на сайте