Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частица равновесное распределение

    В настоящее время не существует метода предсказания оптимального распределения частиц но размерам применительно к крупным установкам. Если это и было бы возможно, то, все равно, в большинстве промышленных установок существуют ограничения относительно размеров используемых частиц, поскольку эти размеры предопределены особенностями осуществляемого процесса, а не характеристиками псевдоожижения. Даже в тех случаях, когда можно регулировать размеры частиц исходного зернистого материала (нанример, при использовании экономически выгодных высоких скоростей газа усиливается истирание частиц, повышается унос мелочи), возникает слой с равновесным распределением частиц но размера . Такое распределение может и не дать оптимальных характеристик слоя с барботажем пузырей. [c.700]


    При изучении реакций D—Н-обмена в циклогексане, а также гидрогенолиза и дегидрирования циклогексана в присутствии U2 в щироком интервале температур (30— 300 °С) на порошковых Pt- и Ni-катализаторах венгерские исследователи [241] показали, что при температурах выше 200 °С начинают идти реакции дегидрирования и гидрогенолиза на Ni образуются н-гексан, толуол и бензол, на Pt — только бензол. При высоких температурах наблюдается равновесное распределение дейтерия не только в продуктах реакции, но и в исходном циклогексане. Различия в свойствах Ni и Pt связывают с тем, что на Ni в значительно большей степени образуются прочно связанные частицы, ответственные за протекание реакции гидрогенолиза и за отравление активной поверхности металла. [c.166]

    Диффузионно-седиментационное равновесие. Выше рассмотрены два крайних случая поведения частиц дисперсной фазы в вязкой среде. В одном случае игнорировалось действие силы тяжести, в другом (при изучении седиментации) не принималось в расчет броуновское движение. При совместном протекании диффузии и седиментации в системе устанавливается равновесное распределение частиц по высоте, описываемое уравнением [c.156]

    Зависимость температуры сте- стирола М = 200 ООО) от температуры клевания от скорости охлаждения можно видеть, сопоставляя температурную зависимость изменения объема полимера при различных скоростях охлаждения. На рис. 209 представлена эта зависимость для полистирола. Коэффициент термического расширения данного полимера неодинаков для твердого и высокоэластичного состояний. Поэтому на кривых, выражающих зависимость объема полимера от температуры, обнаруживается четкий излом, отвечающий температуре стеклования. Ломаная линия А B D отвечает результатам, наблюдаемым при резком охлаждении полимера, а линия A B D — результатам, полученным при охлаждении его со скоростью 0,2° в минуту. Легко видеть, что температура стеклования (излом кривых) в последнем случае ниже, чем в первом. Это объясняется тем, что при быстром охлаждении не успевает достигаться равновесное распределение частиц. [c.583]

    На равновесное распределение частиц в системе влияют самые незначительные толчки и сотрясения, а также неодинаковая температура в различных участках золя, что приводит к образованию в системе конвекционных потоков. Расчеты показывают, что достаточно, например, колебаний температуры на 0,001 °С в 1 ч, чтобы седиментация в высокодисперсном золе золота была полностью исключена. [c.72]

    Соотношение (8.12) между сечениями не ведет к какой-либо общей связи между соответствующими микроскопическими константами скорости, поскольку и выражаются не только через ац,1т и по и через некоторые функции распределения /д(ид) и /в(ив)- Однако если частицы характеризуются равновесными распределениями по скоростям, то в этом случае соответствующие равновесные константы скорости/ (Т ) и/с г>( ) связаны простым соотношением, получаемым из следующих соображений. [c.41]


Рис. У-7. Гетерогенная равновесная реакция в сферической пористой частице схема распределения концентрации, рассчитанная по уравнению (У,30) при К = 5- ф = 2 = 0,1 Рис. У-7. <a href="/info/939492">Гетерогенная равновесная реакция</a> в сферической <a href="/info/785680">пористой частице</a> <a href="/info/1442396">схема распределения концентрации</a>, рассчитанная по уравнению (У,30) при К = 5- ф = 2 = 0,1
    Общее решение вопроса о том, насколько сильно химическая реакция искажает равновесное распределение молекул в зоне реакции, является весьма сложным. В ряде работ [21—26 подробно рассматриваются различные аспекты этой проблемы. Для большинства реакций между сложными частицами в достаточно плотных средах предположение о сохранении теплового равновесия подтверждается с хорошей точностью. [c.20]

Рис. 3. Распределение металлов и кокса по радиусу частиц равновесного катализатора диаметром 4 м.м. Рис. 3. <a href="/info/130596">Распределение металлов</a> и кокса по <a href="/info/2399">радиусу частиц</a> <a href="/info/997316">равновесного катализатора</a> диаметром 4 м.м.
    При рассмотрении диффузии мы не принимали во внимание влияние гравитационного поля (земного притяжения) на систему. Между тем обязательно следует учитывать это влияние на частицы достаточно большой массы, так как такие частицы под действием гравитационного поля будут оседать, или седиментировать. В результате этого в системе установится определенное равновесное распределение частиц по высоте либо, если частицы достаточно тяжелы, все они выпадут в осадок. [c.68]

    Ниже приведены результаты изучения равновесного распределения частиц гидрозоля селена по высоте под действием силы тяжести (прн 293 К)  [c.107]

    Частицы, находящиеся в одном и том же молекулярном состоянии в соприкасающихся фазах, находятся в равновесном распределении, константа к которого равна  [c.121]

    Под действием внешнего электрического поля в диэлектриках (к которым относятся и многие полимеры) нарушается статистически равновесное распределение электрически заряженных частиц, что приводит к появлению отличного от нуля результирующего электрического момента, т. е. наступает поляризация. Поляризацию количественно характеризуют вектором поляризации Р, равным электрическому моменту единицы объема диэлектрика. Если диэлектрик однороден и смещение зарядов одинаково во всех точках, то вектор Р одинаков по всему диэлектрику. Такую поляризацию называют однородной. Поверхностная плотность поляризационных зарядов равна нормальной составляющей Р в данной точке поверхности. [c.231]

    Под действием внешнего электрического поля в диэлектриках (к которым относятся и многие полимеры) нарушается статистически равновесное распределение заряженных частиц, появляется отличный от нуля результирующий электрический момент, возникает поляризация. Электрическим или дипольным моментом системы зарядов называют вектор 1 = 2 г1г (где qi — заряд г-й частицы 1г — плечо -го диполя). Вектор дипольного момента каждого элементарного диполя направлен от отрицательного заряда к положительному. [c.173]

    Размер коллоидных частиц, как уже указывалось, можно найти не только по скорости седиментации в ультрацентрифуге, но и определяя седиментационное равновесие. Для этой цели применяют центрифугирование при не слишком больших частотах вращения (обычно около 20 000 об/мин), так как иначе превалировала бы седиментация и равновесие не устанавливалось. Численный или молекулярный вес, найденный по седиментационному равновесию, отвечает равновесному распределению частиц в системе, он не зависит от способа достижения этого распределения, и, следовательно, на результатах анализа не может сказываться форма частиц и их сольватация. [c.80]

    Условие равновесия между А, В и Активированный комплекс можно (условно) считать находящимся в равновесии с исходными молекулами, если химическая реакция не нарушает максвелл-больцмановского распределения частиц по энергиям. Для этого реакция должна протекать достаточно медленно, значительно медленнее, чем в системе достигается равновесное распределение частиц по энергиям. При этом необходимо, чтобы энергия активации была существенно выше кинетической энергии Е/ЯТ > 5. [c.68]

    Из этого вывода ясны условия, при которых простая химическая реакция следует закону Аррениуса. Во-первых, активация молекул происходит только за счет тепловой энергии. Если молекулы возбуждаются светом, заряженными частицами и т. д., то закон Аррениуса может не выполняться (см. ч. VH). Во-вторых, протекание реакции не должно нарушать равновесного распределения энергии по степеням свободы реагирующих частиц (условие 2) (см. гл. VI, 4). [c.36]

    Равновесное распределение одинаковых частиц на сферической поверхности, подчиняющееся закону - 1/г или 1/г  [c.207]


Таблица 2.4. Равновесное распределение одинаковых частиц на сфере при силе взаимодействия, пропорциональной г " Таблица 2.4. <a href="/info/19377">Равновесное распределение</a> <a href="/info/328116">одинаковых частиц</a> на сфере при <a href="/info/39713">силе взаимодействия</a>, пропорциональной г "
    Сформулированный выше постулат не выполняется для сильно неоднородных систем, когда приходится оперировать с заметным изменением интенсивных термодинамических величин на расстояниях порядка длины свободного пробега молекул а также при больших отклонениях от закона равновесного распределения частиц по энергии. [c.283]

    Ферми-Дирака распределение (200, 203) — равновесное распределение по энергиям для частиц с полуцелым спином, подчиняющихся принципу Паули ( фер-мионам ). Наибольшее значение имеет для описания свойств электронного газа в металлах. [c.315]

    Нахождение равновесного распределения требует решения задачи на отыскание максимума величины W. Однако следует учесть дополнительные условия, связанные с постоянством общего числа частиц и энергии системы Е, а именно [c.146]

    Постройте основное кинетическое уравнение н получите из него уравненне для скорости реакции и равновесное распределение (для фиксированного числа частиц заданной энергии). [c.186]

    Упражнение. Уравнение (10.2.4) для вероятности одной частицы можно интерпретировать как уравнение диффузии для независимых частиц. Покажите, что равновесное распределение и постоянная диффузии согласуются с выражениями, которые можно было бы вывести непосредственно из модели без промежуточных вычислений. [c.264]

    Если бимолекулярный процесс (4) ие нарушает термически равновесного распределения частиц по скоростям, описываемого максвелловской ф-цией / (и, Т), он характеризуется т, наз. микроскопич, константой скорости = Если же распределение ча- [c.286]

    Рассмотрим вначале вопрос о восстановлении равновесного распределения. молекул но энергиям в отсутствии химической реакции. Основой для вывода уравнений, определяющих кинетику изменения функций распределения, служат соотношения баланса между числом частиц, выбывающих из заданного состояния и приходящих в это состояние в результате столкновений. Рассмотрим для определенности обмен энергией между молекулами д и b двухкомпопснтной газовой смеси. Пусп. г и / обозначают заселенности квантовых состояний I и / молекул А и В, нормированные к полному числу молекул [А и [В н единице объема [c.43]

Рис. 2. Распределение металлов (в мг1мг) и кокса (в вес. %) по радиусу частиц равновесного катализатора диаметром 4 мн. Рис. 2. <a href="/info/130596">Распределение металлов</a> (в мг1мг) и кокса (в вес. %) по <a href="/info/2399">радиусу частиц</a> <a href="/info/997316">равновесного катализатора</a> диаметром 4 мн.
    Неравновесными химическими реакциями принято называть реакции, протекающие в условиях нарушения максвелл-больцмановского распределения реагирующих молекул по степеням свободы. Нарушения равновесного распределения в химических реакциях могут быть обусловлены двумя причинами. Первая состоит в том, что в химической реакции расходуются наиболее богатые энергией частицы, что сильнее всего проявляется в эндотермических реакциях, например в реакциях диссоциации. В тех случаях, когда скорость распада превышает ско-рх5сть генерирования активных молекул, распределение колебательной энергии будет отличаться от равновесного и скорость распада становится меньше равновесной. Вторая причина — выделение энергии в элементарных экзотермических актах, которая, как правило, распределяется неравновесным образом по различным степеням свободы реагентов. [c.106]

    Как показали эксперименты, с ростом мощности, воздействующего на исследуемое вещество, например, катализатор электромагнитного излучения, снижается содержание СгО, что связано с ростом температуры образца и увеличением скорости реакций восстановления шестивалентного оксида хрома (табл. 5). Сравнительные характеристики известных методов обезвреживания СгОт (VI) и заявляемого способа обезвреживания приведены в таблице 5. Согласно методу приведенному в первой графе таблицы 5, извлечение СгОз из катшшзатора ИМ-2201 требует большого расхода оборотной воды, в системе не обеспечивается полного извлечения. По методу приведенному во второй графе таблицы содержание СгОз на катализаторе меньше 0,04% (масс.) достичь не удается, что видимо, связано с трудностью извлечения СгОз из объема гранул и равновесным распределением СгОз между поверхностью твердых частиц и раствором. По третьему методу шестивалентный. хром извлекается не эффективно. Четвертый метод (прототип) требует больших энергозатрат. Осуществление этих методов обезвреживания катализатора извлечением из него шестивалентного хрома сопровождается образованием в значительных количествах отходов (сточных вод имеющих в своем составе частицы катализатора, кислоты, продукты сгорания топлива), оказывающих в свою очередь вредное воздействие на окружающую среду. [c.25]

    Тем не менее в условиях достижения равновесного распределения частиц в системе гипсометрический закон для лиозолей соблюдается достаточно точчо. Доказательством этому служит то обстоятельство, что Перрен, исходя из установленного им с помощью микроскопа равновесного распределения по высоте относительно больших частиц монодисперсной суспензии гуммигута, смог вычислить число Авогадро. Найденное таким образом значение числа Ыа оказалось равным 6,82-10 , что довольно близко к значению, найденному с помощью других методов. Вестгрен, работая с золями золота, получил еще более точное значение числа Аво  [c.72]

    Обмен между поступательной и вращательной энергиями (процессы Т—Н). При неупругом столкновении часть кинетической энергии столкнувшихся частиц переходит в потенциальную (вращательную (Я), колебательную, электронную) энергию. Вероятность перехода кинетической энергии во внутреннюю будет мала, если А(/ /г/2лт, где т — продолжительность соударения. Численный расчет числа столкновений, необходимого для установления равновесного распределения по вращательным состояниям молекул, дает для молекул и при ЮООК н = 10, а для Н. к =200 —300. [c.59]

    Нарушения равновесного распределения в химических реакциях могут быть обусловлены двумя причинами. Первая состоит в том, что в химической реакции расходуются наиболее богатые энергией частицы, что сильнее всего проявляется в эндотермических реакциях, например в реакциях диссоциации. В тех случаях, когда скорость распада превышает скорость регенерирования активных молекул, распределение колебательной энергии будет отличаться от равновесного и скорость распада становится меньше равновесной. Вторая причина — выделение энергии в элементарных экзотермических актах, которая, вообщ,е говоря, распределяется неравновесным образом по различным степеням свободы реагентов. [c.63]

    Кинетику газофазных реакций как сферу исследований можно разделить сегодня на 2 большие области кинетику реакций в условиях сохранения максвелл-больцмановского равновесия (классическую химическую кинетику) и неравновесную химическую кинетику, которая изучает системы, где нарушено или постоянно нарушается максвелл-больцмано-вское равновесие. Для газа, находящегося в равновесных условиях, можно использовать такие понятия, как средняя скорость, доля молекул, обладающих запасом энергии болыие Е. Статистическая физика позволяет эти величины вычислить для конкретных условий, в результате чего классические теории позволяют описать химический процесс и вычислить такие характеристики реакции, как среднее число столкновений, стерический фактор, энтропию активации и т. д. Однако такие концепции и расчеты верны как модельные приближения только при условии сохранения равновесного распределения частиц по энергиям. Когда реакция протекает сравнительно медленно, а давление газа достаточно высоко для того, чтобы обеспечить необходимую частоту столкновений, принятое условие выполнимо. Измеренные на опыте в таких случаях константа скорости и энергия активации реакции являются средними величинами, однозначно связанными с максвелл-больцма-новским распределением в системе. [c.112]

    Эти два подхода к определению избыточного химического потенциала вещества дисперсной фазы Лцг и А д. г используются для анализа различных аспектов состояния равновесия дисперсной системы. Первый из них был применен в 3 гл. I к рассмотрению равновесия частицы дисперсной фазы со средой при выводе уравнения Томсона (Кельвина). Второй подход, учитывающий участие частиц в тепловом движении, предусматривает тем сам Ы1М появление И исчезновение частицы как целого и повво-ляет описать равновесие частиц различного размера в дисперсной системе . Равновесному распределению частиц по размерам отвечает условие постоянства химического потенциала для частиц различного размера (включая и молекулярные), т. е. Дц г = =соп51. Из соотношеиия (IV—14) получаем выражеиие для равновесного числа частиц, данного радиуса г  [c.118]

    Седиментация частиц дисперсной фазы под действием сильг тяжести приводит к концентрированию частиц в нижней части сосуда (или в верхней, если плотность вещества дисперсной фазы ниже плотности дисперсионной среды). Для частиц достаточно малого размера, у которых склонность к седиментации выражена слабее, а коэффициент диффузии — выше, седиментации противостоит стремление к равномерному распределению частиц по высоте вследствие броуновского движения. Если между процессами седиментации и диффузии наступает равновесие — седиментационно-диффузионное равновесие, то устанавливается и определенное равновесное распределение частиц по высоте. Получить условие седиментационно-диффузионного равновесия можпо как из кинетических, так и из термодинамических соображений. [c.154]

    Седиментация частиц дисперсной фазы под действием си пы тяжести приводит к концентриронанию часгиц в нижней часги сосуда (р > Ро) или в верхней (р < ро). Чем меньше размер частиц, тем ниже скорость седиментации и выше коэффициент диффузии. Для частиц достаточно малого размера стремление к равномерному распределению частиц по высоте вследствие броуновского движения противостоит седиментации. Если между процессами седиментации и диффузии наступает седиментационно-диффузионное равновесие, то устанавливается и определенное равновесное распределение частиц по высоте. Получить условие седиментационно-диффузионного равновесия можно как из кинетическою, так и из термодинамического подхода. [c.186]

    Равновесное распределение частиц в коллоидных системах, особенно в высокодисперных, достигается очень медленно, оно легко нарушается при сотрясении, толчках, под действием конвекционных потоков. [c.193]

    Скорости элементарных р-ций с участием активных частиц часто измеряют независимо от скорости суммарной р-ции. Для этого активные частицы получают в электрич. разряде, фотохим. или термич. путем (см., напр.. Импульсный фотолиз). Концентрацию активных частиц определяют непосредственно либо по накоплению продуктов их взаимод. с соответствующими молекулами при использ. методов абсорбц. спектроскопии, ЭПР, масс-спектрометрии и др. Совр. методы позволяют установить зависимость вероятности р-ции от вида энергии реагирующих частиц и распределения энергии между молекулами продуктов р-ции, что имеет большое значение для кинетики неравновесных р-ций (см. Равновесные и неравновесные реакции). [c.255]


Смотреть страницы где упоминается термин Частица равновесное распределение: [c.114]    [c.91]    [c.30]    [c.142]    [c.193]    [c.488]   
Теоретическая неорганическая химия (1969) -- [ c.0 ]

Теоретическая неорганическая химия (1971) -- [ c.0 ]

Теоретическая неорганическая химия (1969) -- [ c.0 ]

Теоретическая неорганическая химия (1971) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте